BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22773160)

  • 1. Formation of lipid bilayers inside microfluidic channel array for monitoring membrane-embedded nanopores of phi29 DNA packaging nanomotor.
    Shim JS; Geng J; Ahn CH; Guo P
    Biomed Microdevices; 2012 Oct; 14(5):921-8. PubMed ID: 22773160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing.
    Ji Z; Jordan M; Jayasinghe L; Guo P
    Nanomedicine; 2020 Apr; 25():102170. PubMed ID: 32035271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of a viral DNA-packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA.
    Haque F; Geng J; Montemagno C; Guo P
    Nat Protoc; 2013 Feb; 8(2):373-92. PubMed ID: 23348364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel size conversion of Phi29 DNA-packaging nanomotor for discrimination of single- and double-stranded nucleic acids.
    Geng J; Wang S; Fang H; Guo P
    ACS Nano; 2013 Apr; 7(4):3315-23. PubMed ID: 23488809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered nanopore of Phi29 DNA-packaging motor for real-time detection of single colon cancer specific antibody in serum.
    Wang S; Haque F; Rychahou PG; Evers BM; Guo P
    ACS Nano; 2013 Nov; 7(11):9814-22. PubMed ID: 24152066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time sensing and discrimination of single chemicals using the channel of phi29 DNA packaging nanomotor.
    Haque F; Lunn J; Fang H; Smithrud D; Guo P
    ACS Nano; 2012 Apr; 6(4):3251-61. PubMed ID: 22458779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oriented single directional insertion of nanochannel of bacteriophage SPP1 DNA packaging motor into lipid bilayer via polar hydrophobicity.
    Zhou Z; Ji Z; Wang S; Haque F; Guo P
    Biomaterials; 2016 Oct; 105():222-227. PubMed ID: 27529454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis.
    Funakoshi K; Suzuki H; Takeuchi S
    Anal Chem; 2006 Dec; 78(24):8169-74. PubMed ID: 17165804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array.
    Osaki T; Suzuki H; Le Pioufle B; Takeuchi S
    Anal Chem; 2009 Dec; 81(24):9866-70. PubMed ID: 20000639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring.
    Marchand R; Thibault C; Carcenac F; Vieu C; Trévisiol E
    Biomed Microdevices; 2017 Sep; 19(3):60. PubMed ID: 28677098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid bilayer arrays: cyclically formed and measured.
    Lu B; Kocharyan G; Schmidt JJ
    Biotechnol J; 2014 Mar; 9(3):446-51. PubMed ID: 24730059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Langmuir; 2006 Feb; 22(4):1937-42. PubMed ID: 16460131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust properties of membrane-embedded connector channel of bacterial virus phi29 DNA packaging motor.
    Jing P; Haque F; Vonderheide AP; Montemagno C; Guo P
    Mol Biosyst; 2010 Oct; 6(10):1844-52. PubMed ID: 20523933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-channel of viral DNA packaging motor as single pore to differentiate peptides with single amino acid difference.
    Ji Z; Kang X; Wang S; Guo P
    Biomaterials; 2018 Nov; 182():227-233. PubMed ID: 30138785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.
    Diederichs T; Nguyen QH; Urban M; Tampé R; Tornow M
    Nano Lett; 2018 Jun; 18(6):3901-3910. PubMed ID: 29741381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.