These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 22773257)
1. Metabolic analysis of male servicemembers with transtibial amputations carrying military loads. Schnall BL; Wolf EJ; Bell JC; Gambel J; Bensel CK J Rehabil Res Dev; 2012; 49(4):535-44. PubMed ID: 22773257 [TBL] [Abstract][Full Text] [Related]
2. Kinematic analysis of males with transtibial amputation carrying military loads. Schnall BL; Hendershot BD; Bell JC; ; Wolf EJ J Rehabil Res Dev; 2014; 51(10):1505-14. PubMed ID: 25815769 [TBL] [Abstract][Full Text] [Related]
3. Temporal Spatial and Metabolic Measures of Walking in Highly Functional Individuals With Lower Limb Amputations. Jarvis HL; Bennett AN; Twiste M; Phillip RD; Etherington J; Baker R Arch Phys Med Rehabil; 2017 Jul; 98(7):1389-1399. PubMed ID: 27865845 [TBL] [Abstract][Full Text] [Related]
4. Physiological responses to multiple speed treadmill walking for Syme vs. transtibial amputation--a case report. Lin-Chan S; Nielsen DH; Shurr DG; Saltzman CL Disabil Rehabil; 2003 Dec; 25(23):1333-8. PubMed ID: 14617440 [TBL] [Abstract][Full Text] [Related]
5. Does unilateral transtibial amputation lead to greater metabolic demand during walking? Esposito ER; Rodriguez KM; Ràbago CA; Wilken JM J Rehabil Res Dev; 2014; 51(8):1287-96. PubMed ID: 25671680 [TBL] [Abstract][Full Text] [Related]
6. Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties. Mattes SJ; Martin PE; Royer TD Arch Phys Med Rehabil; 2000 May; 81(5):561-8. PubMed ID: 10807092 [TBL] [Abstract][Full Text] [Related]
7. Energy cost of walking measurements in subjects with lower limb amputations: a comparison study between floor and treadmill test. Traballesi M; Porcacchia P; Averna T; Brunelli S Gait Posture; 2008 Jan; 27(1):70-5. PubMed ID: 17360186 [TBL] [Abstract][Full Text] [Related]
8. Do patients with bone bridge amputations have improved gait compared with patients with traditional amputations? Kingsbury T; Thesing N; Collins JD; Carney J; Wyatt M Clin Orthop Relat Res; 2014 Oct; 472(10):3036-43. PubMed ID: 24818734 [TBL] [Abstract][Full Text] [Related]
9. Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study. McDonald CL; Kramer PA; Morgan SJ; Halsne EG; Cheever SM; Hafner BJ Gait Posture; 2018 May; 62():349-354. PubMed ID: 29614468 [TBL] [Abstract][Full Text] [Related]
10. Effects of heavy load carriage during constant-speed, simulated, road marching. Beekley MD; Alt J; Buckley CM; Duffey M; Crowder TA Mil Med; 2007 Jun; 172(6):592-5. PubMed ID: 17615838 [TBL] [Abstract][Full Text] [Related]
11. Does intact limb loading differ in servicemembers with traumatic lower limb loss? Pruziner AL; Werner KM; Copple TJ; Hendershot BD; Wolf EJ Clin Orthop Relat Res; 2014 Oct; 472(10):3068-75. PubMed ID: 24832826 [TBL] [Abstract][Full Text] [Related]
12. The effects of prosthetic foot design on physiologic measurements, self-selected walking velocity, and physical activity in people with transtibial amputation. Hsu MJ; Nielsen DH; Lin-Chan SJ; Shurr D Arch Phys Med Rehabil; 2006 Jan; 87(1):123-9. PubMed ID: 16401450 [TBL] [Abstract][Full Text] [Related]
13. The use of the 6-min walk test as a proxy for the assessment of energy expenditure during gait in individuals with lower-limb amputation. Kark L; McIntosh AS; Simmons A Int J Rehabil Res; 2011 Sep; 34(3):227-34. PubMed ID: 21654324 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Quesada PM; Mengelkoch LJ; Hale RC; Simon SR Ergonomics; 2000 Mar; 43(3):293-309. PubMed ID: 10755654 [TBL] [Abstract][Full Text] [Related]
15. The effects of added prosthetic mass on physiologic responses and stride frequency during multiple speeds of walking in persons with transtibial amputation. Lin-Chan SJ; Nielsen DH; Yack HJ; Hsu MJ; Shurr DG Arch Phys Med Rehabil; 2003 Dec; 84(12):1865-71. PubMed ID: 14669196 [TBL] [Abstract][Full Text] [Related]
16. Soldiers' load carriage performance in high mountains: a physiological study. Chatterjee T; Bhattacharyya D; Pramanik A; Pal M; Majumdar D; Majumdar D Mil Med Res; 2017; 4():6. PubMed ID: 28239483 [TBL] [Abstract][Full Text] [Related]
17. The Pandolf equation under-predicts the metabolic rate of contemporary military load carriage. Drain JR; Aisbett B; Lewis M; Billing DC J Sci Med Sport; 2017 Nov; 20 Suppl 4():S104-S108. PubMed ID: 28919496 [TBL] [Abstract][Full Text] [Related]
18. A more compliant prosthetic foot better accommodates added load while walking among Servicemembers with transtibial limb loss. Schnall BL; Dearth CL; Elrod JM; Golyski PR; Koehler-McNicholas SR; Ray SF; Hansen AH; Hendershot BD J Biomech; 2020 Jan; 98():109395. PubMed ID: 31668413 [TBL] [Abstract][Full Text] [Related]
19. Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation? Russell Esposito E; Choi HS; Darter BJ; Wilken JM PLoS One; 2017; 12(2):e0171786. PubMed ID: 28182797 [TBL] [Abstract][Full Text] [Related]
20. Identifying obstacles to return to duty in severely injured combat-related servicemembers with amputation. Hurley RK; Rivera JC; Wenke JC; Krueger CA J Rehabil Res Dev; 2015; 52(1):53-61. PubMed ID: 26230831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]