These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22773309)

  • 41. Tetraglyme-mediated synthesis of Pd nanoparticles for dehydrogenation of ammonia borane.
    Kim SK; Kim TJ; Kim TY; Lee G; Park JT; Nam SW; Kang SO
    Chem Commun (Camb); 2012 Feb; 48(14):2021-3. PubMed ID: 22234607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The dehydrogenation of ammonia-borane catalysed by dicarbonylruthenacyclic(II) complexes.
    Boulho C; Djukic JP
    Dalton Trans; 2010 Oct; 39(38):8893-905. PubMed ID: 20714618
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation.
    Yan JM; Zhang XB; Han S; Shioyama H; Xu Q
    Inorg Chem; 2009 Aug; 48(15):7389-93. PubMed ID: 19722696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane.
    Abo-Hamed EK; Pennycook T; Vaynzof Y; Toprakcioglu C; Koutsioubas A; Scherman OA
    Small; 2014 Aug; 10(15):3145-52. PubMed ID: 24777891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane.
    Karahan S; Zahmakıran M; Özkar S
    Chem Commun (Camb); 2012 Jan; 48(8):1180-2. PubMed ID: 22158916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.
    Hwang H; Kwon T; Kim HY; Park J; Oh A; Kim B; Baik H; Joo SH; Lee K
    Small; 2018 Jan; 14(3):. PubMed ID: 29171686
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile aqueous synthesis and electromagnetic properties of novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures.
    An Z; Zhang J; Pan S
    Dalton Trans; 2010 Apr; 39(14):3378-83. PubMed ID: 20379530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hollow and cage-bell structured nanomaterials of noble metals.
    Liu H; Qu J; Chen Y; Li J; Ye F; Lee JY; Yang J
    J Am Chem Soc; 2012 Jul; 134(28):11602-10. PubMed ID: 22694734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: synthesis and characterization of high molecular weight polyaminoboranes.
    Staubitz A; Sloan ME; Robertson AP; Friedrich A; Schneider S; Gates PJ; Schmedt auf der Günne J; Manners I
    J Am Chem Soc; 2010 Sep; 132(38):13332-45. PubMed ID: 20806956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-Pot Fabrication of Pd Nanoparticles@Covalent-Organic-Framework-Derived Hollow Polyamine Spheres as a Synergistic Catalyst for Tandem Catalysis.
    Yang X; He Y; Li L; Shen J; Huang J; Li L; Zhuang Z; Bi J; Yu Y
    Chemistry; 2020 Feb; 26(8):1864-1870. PubMed ID: 31774593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of Ni@Pd Core-Shell Nanoparticles Supported on KIT-6 by Ultrasound-Assisted Galvanic Replacement for Dodecahydro-
    Feng Z; Liu Z; Bai X
    Inorg Chem; 2023 Sep; 62(35):14355-14367. PubMed ID: 37616599
    [TBL] [Abstract][Full Text] [Related]  

  • 53. One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage.
    Ayvalı T; Zahmakıran M; Özkar S
    Dalton Trans; 2011 Apr; 40(14):3584-91. PubMed ID: 21373677
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoporous PtRu Alloys with Unique Catalytic Activity toward Hydrolytic Dehydrogenation of Ammonia Borane.
    Zhou Q; Xu C
    Chem Asian J; 2016 Mar; 11(5):705-12. PubMed ID: 26573746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles.
    Seto T; Akinaga H; Takano F; Koga K; Orii T; Hirasawa M
    J Phys Chem B; 2005 Jul; 109(28):13403-5. PubMed ID: 16852675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres.
    Yang J; Lee JY; Too HP; Valiyaveettil S
    J Phys Chem B; 2006 Jan; 110(1):125-9. PubMed ID: 16471509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy.
    Hwang BJ; Chen CH; Sarma LS; Chen JM; Wang GR; Tang MT; Liu DG; Lee JF
    J Phys Chem B; 2006 Apr; 110(13):6475-82. PubMed ID: 16570944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heteroepitaxial Growth of B
    Kang S; Cha J; Jo YS; Lee YJ; Sohn H; Kim Y; Song CK; Kim Y; Lim DH; Park J; Yoon CW
    Adv Mater; 2023 Jan; 35(4):e2203364. PubMed ID: 35853218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core.
    Zhang XB; Yan JM; Han S; Shioyama H; Xu Q
    J Am Chem Soc; 2009 Mar; 131(8):2778-9. PubMed ID: 19239265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Co-Co2B, Ni-Ni3B and Co-Ni-B nanocomposites catalyzed ammonia-borane methanolysis for hydrogen generation.
    Kalidindi SB; Vernekar AA; Jagirdar BR
    Phys Chem Chem Phys; 2009 Feb; 11(5):770-5. PubMed ID: 19290323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.