These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2277355)

  • 21. Maturational changes in pontine and medullary alpha-adrenoceptor influences on respiratory rhythm generation in neonatal rats.
    Corcoran AE; Milsom WK
    Respir Physiol Neurobiol; 2009 Feb; 165(2-3):195-201. PubMed ID: 19110076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat.
    Greer JJ; Smith JC; Feldman JL
    J Physiol; 1991 Jun; 437():727-49. PubMed ID: 1653855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perinatal respiratory control and its modulation by adenosine and caffeine in the rat.
    Herlenius E; Adén U; Tang LQ; Lagercrantz H
    Pediatr Res; 2002 Jan; 51(1):4-12. PubMed ID: 11756633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of rostral medulla in serotonin-induced changes of respiratory rhythm in newborn rat brainstem-spinal cord preparations.
    Makino M; Saiki C; Ide R; Matsumoto S
    Neurosci Lett; 2014 Jan; 559():127-31. PubMed ID: 24325887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents.
    Hilaire G; Viemari JC; Coulon P; Simonneau M; Bévengut M
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):187-97. PubMed ID: 15519555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions between medullary and spinal respiratory rhythm generators in the in vitro brainstem spinal cord preparation from newborn rats.
    Dubayle D; Viala D
    Exp Brain Res; 1996 Apr; 109(1):1-8. PubMed ID: 8740202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical activation and inhibition of respiration in vitro.
    Hamada O; Garcia-Rill E; Skinner RD
    Neurosci Res; 1994 Mar; 19(2):131-42. PubMed ID: 8008241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potentiation of cortical neuron responses to noradrenaline by 2-phenylethylamine is independent of endogenous noradrenaline.
    Paterson IA
    Neurochem Res; 1993 Dec; 18(12):1329-36. PubMed ID: 8272197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
    Gabbay H; Delvolvé I; Lev-Tov A
    J Neurophysiol; 2002 Aug; 88(2):732-9. PubMed ID: 12163525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylcholine and central chemosensitivity: in vitro study in the newborn rat.
    Monteau R; Morin D; Hilaire G
    Respir Physiol; 1990 Aug; 81(2):241-53. PubMed ID: 2263784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory rhythm of brainstem-spinal cord preparations: Effects of maturation, age, mass and oxygenation.
    Fong AY; Corcoran AE; Zimmer MB; Andrade DV; Milsom WK
    Respir Physiol Neurobiol; 2008 Dec; 164(3):429-40. PubMed ID: 18948229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facilitation of respiratory rhythm by a mu-opioid agonist in newborn rat pons-medulla-spinal cord preparations.
    Tanabe A; Fujii T; Onimaru H
    Neurosci Lett; 2005 Feb; 375(1):19-22. PubMed ID: 15664115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of CO2 and pH on the spinal respiratory rhythm generator in vitro.
    Dubayle D; Viala D
    Brain Res Bull; 1998; 45(1):83-7. PubMed ID: 9434206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nasal trigeminal inputs release the A5 inhibition received by the respiratory rhythm generator of the mouse neonate.
    Viemari JC; Bévengut M; Coulon P; Hilaire G
    J Neurophysiol; 2004 Feb; 91(2):746-58. PubMed ID: 14561692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of sympathetic noradrenergic transmission by guanabenz and guanethidine in rat isolated mesenteric artery: involvement of neuronal potassium channels.
    Fabiani ME; Story DF
    Pharmacol Res; 1996 Mar; 33(3):171-80. PubMed ID: 8880888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of microinjections of glutamate and glutamate receptor antagonists into A5 zone on generation of respiratory rhythm in ponto-bulbospinal preparations from newborn rats in vitro.
    Alekseyeva AS; Pyatin VF; Yakunina OV
    Bull Exp Biol Med; 2007 Feb; 143(2):175-7. PubMed ID: 17970193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of adenosinergic A1 systems in the occurrence of respiratory perturbations encountered in newborns following an in utero caffeine exposure. a study on brainstem-spinal cord preparations isolated from newborn rats.
    Saadani-Makki F; Frugière A; Gros F; Gaytan S; Bodineau L
    Neuroscience; 2004; 127(2):505-18. PubMed ID: 15262339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity.
    Smith JC; Greer JJ; Liu GS; Feldman JL
    J Neurophysiol; 1990 Oct; 64(4):1149-69. PubMed ID: 2258739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of eugenol on respiratory burst generation in newborn rat brainstem-spinal cord preparations.
    Kotani S; Irie S; Izumizaki M; Onimaru H
    Pflugers Arch; 2018 Feb; 470(2):385-394. PubMed ID: 28963585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for two distinct sympathoinhibitory bulbo-spinal systems.
    Bernthal PJ; Koss MC
    Neuropharmacology; 1984 Jan; 23(1):31-6. PubMed ID: 6144065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.