BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22773649)

  • 1. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris.
    Crosby HA; Rank KC; Rayment I; Escalante-Semerena JC
    Appl Environ Microbiol; 2012 Sep; 78(18):6619-29. PubMed ID: 22773649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB.
    Hughes AJ; Keatinge-Clay A
    Chem Biol; 2011 Feb; 18(2):165-76. PubMed ID: 21338915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation.
    Koryakina I; Williams GJ
    Chembiochem; 2011 Oct; 12(15):2289-93. PubMed ID: 23106079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoenzymatic Synthesis and Biological Evaluation for Bioactive Molecules Derived from Bacterial Benzoyl Coenzyme A Ligase and Plant Type III Polyketide Synthase.
    Adhikari K; Lo IW; Chen CL; Wang YL; Lin KH; Zadeh SM; Rattinam R; Li YS; Wu CJ; Li TL
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32397467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetically and Crystallographically Guided Mutations of a Benzoate CoA Ligase (BadA) Elucidate Mechanism and Expand Substrate Permissivity.
    Thornburg CK; Wortas-Strom S; Nosrati M; Geiger JH; Walker KD
    Biochemistry; 2015 Oct; 54(40):6230-42. PubMed ID: 26378464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering.
    Lombó F; Pfeifer B; Leaf T; Ou S; Kim YS; Cane DE; Licari P; Khosla C
    Biotechnol Prog; 2001; 17(4):612-7. PubMed ID: 11485419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the substrate specificity of the Rhodopseudomonas palustris protein acetyltransferase RpPat: identification of a loop critical for recognition by RpPat.
    Crosby HA; Rank KC; Rayment I; Escalante-Semerena JC
    J Biol Chem; 2012 Nov; 287(49):41392-404. PubMed ID: 23076154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris.
    Wang Z; Wen Q; Harwood CS; Liang B; Yang J
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii--cloning, sequencing, and expression of the enzymes in Escherichia coli.
    An JH; Kim YS
    Eur J Biochem; 1998 Oct; 257(2):395-402. PubMed ID: 9826185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Heterologous expression and characterization of a thermostable acylCoA synthetase].
    Dong S; Wang Y; Ji J; Zheng J
    Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1477-85. PubMed ID: 29738220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a range of fluorescent reagentless biosensors for ATP, based on malonyl-coenzyme A synthetase.
    Vancraenenbroeck R; Kunzelmann S; Webb MR
    PLoS One; 2017; 12(6):e0179547. PubMed ID: 28636641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii.
    An JH; Lee GY; Jung JW; Lee W; Kim YS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):159-66. PubMed ID: 10548546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases.
    Koryakina I; McArthur J; Randall S; Draelos MM; Musiol EM; Muddiman DC; Weber T; Williams GJ
    ACS Chem Biol; 2013 Jan; 8(1):200-8. PubMed ID: 23083014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian ACSF3 protein is a malonyl-CoA synthetase that supplies the chain extender units for mitochondrial fatty acid synthesis.
    Witkowski A; Thweatt J; Smith S
    J Biol Chem; 2011 Sep; 286(39):33729-36. PubMed ID: 21846720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase.
    Tseng CC; McLoughlin SM; Kelleher NL; Walsh CT
    Biochemistry; 2004 Feb; 43(4):970-80. PubMed ID: 14744141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates.
    Samanta SK; Harwood CS
    Mol Microbiol; 2005 Feb; 55(4):1151-9. PubMed ID: 15686561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies.
    Jung JW; An JH; Na KB; Kim YS; Lee W
    Protein Sci; 2000 Jul; 9(7):1294-303. PubMed ID: 10933494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fluorescent, Reagentless Biosensor for ATP, Based on Malonyl-Coenzyme A Synthetase.
    Vancraenenbroeck R; Webb MR
    ACS Chem Biol; 2015 Nov; 10(11):2650-7. PubMed ID: 26355992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acetylation motif in AMP-forming Acyl coenzyme A synthetases contains residues critical for acetylation and recognition by the protein acetyltransferase pat of Rhodopseudomonas palustris.
    Crosby HA; Escalante-Semerena JC
    J Bacteriol; 2014 Apr; 196(8):1496-504. PubMed ID: 24488314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of active-site residues in Bradyrhizobium japonicum malonyl-coenzyme A synthetase.
    Koo HM; Kim YS
    Arch Biochem Biophys; 2000 Jun; 378(1):167-74. PubMed ID: 10871057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.