BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 22773758)

  • 1. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia.
    Jumbo-Lucioni PP; Hopson ML; Hang D; Liang Y; Jones DP; Fridovich-Keil JL
    Dis Model Mech; 2013 Jan; 6(1):84-94. PubMed ID: 22773758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a Drosophila melanogaster model of classic galactosemia.
    Jumbo-Lucioni PP; Ryan EL; Hopson ML; Bishop HM; Weitner T; Tovmasyan A; Spasojevic I; Batinic-Haberle I; Liang Y; Jones DP; Fridovich-Keil JL
    Antioxid Redox Signal; 2014 May; 20(15):2361-71. PubMed ID: 23758052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation.
    Daenzer JM; Jumbo-Lucioni PP; Hopson ML; Garza KR; Ryan EL; Fridovich-Keil JL
    Dis Model Mech; 2016 Nov; 9(11):1375-1382. PubMed ID: 27562100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Drosophila melanogaster model of classic galactosemia.
    Kushner RF; Ryan EL; Sefton JM; Sanders RD; Lucioni PJ; Moberg KH; Fridovich-Keil JL
    Dis Model Mech; 2010; 3(9-10):618-27. PubMed ID: 20519569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mediators of a long-term movement abnormality in a Drosophila melanogaster model of classic galactosemia.
    Ryan EL; DuBoff B; Feany MB; Fridovich-Keil JL
    Dis Model Mech; 2012 Nov; 5(6):796-803. PubMed ID: 22736462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A galactose-1-phosphate uridylyltransferase-null rat model of classic galactosemia mimics relevant patient outcomes and reveals tissue-specific and longitudinal differences in galactose metabolism.
    Rasmussen SA; Daenzer JMI; MacWilliams JA; Head ST; Williams MB; Geurts AM; Schroeder JP; Weinshenker D; Fridovich-Keil JL
    J Inherit Metab Dis; 2020 May; 43(3):518-528. PubMed ID: 31845342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the pathogenesis of galactosemia.
    Leslie ND
    Annu Rev Nutr; 2003; 23():59-80. PubMed ID: 12704219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular relationship between deficient UDP-galactose uridyl transferase (GALT) and ceramide galactosyltransferase (CGT) enzyme function: a possible cause for poor long-term prognosis in classic galactosemia.
    Lebea PJ; Pretorius PJ
    Med Hypotheses; 2005; 65(6):1051-7. PubMed ID: 16125333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactosemia: when is it a newborn screening emergency?
    Berry GT
    Mol Genet Metab; 2012 May; 106(1):7-11. PubMed ID: 22483615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE).
    Mumma JO; Chhay JS; Ross KL; Eaton JS; Newell-Litwa KA; Fridovich-Keil JL
    Mol Genet Metab; 2008 Feb; 93(2):160-71. PubMed ID: 17981065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel mRNA-Based Therapy Reduces Toxic Galactose Metabolites and Overcomes Galactose Sensitivity in a Mouse Model of Classic Galactosemia.
    Balakrishnan B; An D; Nguyen V; DeAntonis C; Martini PGV; Lai K
    Mol Ther; 2020 Jan; 28(1):304-312. PubMed ID: 31604675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pilot study of neonatal GALT gene replacement using AAV9 dramatically lowers galactose metabolites in blood, liver, and brain and minimizes cataracts in GALT-null rat pups.
    Rasmussen SA; Daenzer JMI; Fridovich-Keil JL
    J Inherit Metab Dis; 2021 Jan; 44(1):272-281. PubMed ID: 32882063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sweet and sour: an update on classic galactosemia.
    Coelho AI; Rubio-Gozalbo ME; Vicente JB; Rivera I
    J Inherit Metab Dis; 2017 May; 40(3):325-342. PubMed ID: 28281081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mouse model of galactose-1-phosphate uridyl transferase deficiency.
    Leslie ND; Yager KL; McNamara PD; Segal S
    Biochem Mol Med; 1996 Oct; 59(1):7-12. PubMed ID: 8902187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila melanogaster Models of Galactosemia.
    Daenzer JM; Fridovich-Keil JL
    Curr Top Dev Biol; 2017; 121():377-395. PubMed ID: 28057307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hereditary galactosemia.
    Demirbas D; Coelho AI; Rubio-Gozalbo ME; Berry GT
    Metabolism; 2018 Jun; 83():188-196. PubMed ID: 29409891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grip strength in patients with galactosemia and in a galactose-1-phosphate uridylyltransferase (GALT)-null rat model.
    Druss JJ; Rudd Zhong Manis J; Potter NL; Fridovich-Keil JL
    J Inherit Metab Dis; 2023 Nov; 46(6):1131-1138. PubMed ID: 37776278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis of galactosemia - Past, present and future.
    Timson DJ
    Gene; 2016 Sep; 589(2):133-41. PubMed ID: 26143117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models.
    Haskovic M; Coelho AI; Bierau J; Vanoevelen JM; Steinbusch LKM; Zimmermann LJI; Villamor-Martinez E; Berry GT; Rubio-Gozalbo ME
    J Inherit Metab Dis; 2020 May; 43(3):392-408. PubMed ID: 31808946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early postnatal alterations in follicular stress response and survival in a mouse model of Classic Galactosemia.
    Hagen-Lillevik S; Johnson J; Lai K
    J Ovarian Res; 2022 Nov; 15(1):122. PubMed ID: 36414970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.