These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22773791)

  • 1. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway.
    Monniot C; Zébré AC; Aké FM; Deutscher J; Milohanic E
    J Bacteriol; 2012 Sep; 194(18):4972-82. PubMed ID: 22773791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic glycerol dissimilation via the Enterococcus faecalis DhaK pathway depends on NADH oxidase and a phosphotransfer reaction from PEP to DhaK via EIIADha.
    Sauvageot N; Ladjouzi R; Benachour A; Rincé A; Deutscher J; Hartke A
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2661-2666. PubMed ID: 22878395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [PECULIARITIES OF GLUCOSE AND GLYCEROL METABOLISM IN Nocardia vaccinii IMB B-7405].
    Pirog TP; Shevchuk TA; Beregova KA; Kudrya NV
    Ukr Biochem J; 2015; 87(2):66-75. PubMed ID: 26255340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system.
    Deutscher J; Sauerwald H
    J Bacteriol; 1986 Jun; 166(3):829-36. PubMed ID: 3011747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases.
    Erni B; Siebold C; Christen S; Srinivas A; Oberholzer A; Baumann U
    Cell Mol Life Sci; 2006 Apr; 63(7-8):890-900. PubMed ID: 16505971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A; Yebra MJ; Boël G; Mazé A; Deutscher J
    J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR.
    Bächler C; Schneider P; Bähler P; Lustig A; Erni B
    EMBO J; 2005 Jan; 24(2):283-93. PubMed ID: 15616579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.
    Gutknecht R; Beutler R; Garcia-Alles LF; Baumann U; Erni B
    EMBO J; 2001 May; 20(10):2480-6. PubMed ID: 11350937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of the glycerol-oxidative pathway of Clostridium butyricum VPI 1718.
    Raynaud C; Lee J; Sarçabal P; Croux C; Meynial-Salles I; Soucaille P
    J Bacteriol; 2011 Jun; 193(12):3127-34. PubMed ID: 21478343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a mannose utilization system in Bacillus subtilis.
    Sun T; Altenbuchner J
    J Bacteriol; 2010 Apr; 192(8):2128-39. PubMed ID: 20139185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel activator of mannose-specific phosphotransferase system permease expression in Listeria innocua, identified by screening for pediocin AcH resistance.
    Xue J; Hunter I; Steinmetz T; Peters A; Ray B; Miller KW
    Appl Environ Microbiol; 2005 Mar; 71(3):1283-90. PubMed ID: 15746330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of glycerol and dihydroxyacetone metabolism in Enterococcus faecium.
    Staerck C; Wasselin V; Budin-Verneuil A; Rincé I; Cacaci M; Weigel M; Giraud C; Hain T; Hartke A; Riboulet-Bisson E
    FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33864460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoenolpyruvate- and ATP-dependent dihydroxyacetone kinases: covalent substrate-binding and kinetic mechanism.
    Garcia-Alles LF; Siebold C; Nyffeler TL; Flükiger-Brühwiler K; Schneider P; Bürgi HB; Baumann U; Erni B
    Biochemistry; 2004 Oct; 43(41):13037-45. PubMed ID: 15476397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three ATP-dependent phosphorylating enzymes in the first committed step of dihydroxyacetone metabolism in Gluconobacter thailandicus NBRC3255.
    Kataoka N; Hirata K; Matsutani M; Ano Y; Nguyen TM; Adachi O; Matsushita K; Yakushi T
    Appl Microbiol Biotechnol; 2021 Feb; 105(3):1227-1236. PubMed ID: 33475798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase.
    Oberholzer AE; Schneider P; Baumann U; Erni B
    J Mol Biol; 2006 Jun; 359(3):539-45. PubMed ID: 16647083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.