These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2277547)

  • 21. Time-domain formulation of asymmetric T-tube model of arterial system.
    Campbell KB; Burattini R; Bell DL; Kirkpatrick RD; Knowlen GG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1761-74. PubMed ID: 2360669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulation of blood flow patterns in arteries of various geometries.
    Wong PK; Johnston KW; Ethier CR; Cobbold RS
    J Vasc Surg; 1991 Nov; 14(5):658-67. PubMed ID: 1942375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses.
    Cole JS; Wijesinghe LD; Watterson JK; Scott DJ
    Proc Inst Mech Eng H; 2002; 216(2):135-43. PubMed ID: 12022420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech; 1996 May; 29(5):635-42. PubMed ID: 8707790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method of intraoperative hydraulic impedance measurement provides valuable prognostic information about infrainguinal graft patency.
    Heise M; Krüger U; Settmacher U; Sklenar S; Neuhaus P; Scholz H
    J Vasc Surg; 1999 Aug; 30(2):301-8. PubMed ID: 10436450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structured tree outflow condition for blood flow in larger systemic arteries.
    Olufsen MS
    Am J Physiol; 1999 Jan; 276(1):H257-68. PubMed ID: 9887040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intraoperative duplex monitoring of infrainguinal vein bypass procedures.
    Johnson BL; Bandyk DF; Back MR; Avino AJ; Roth SM
    J Vasc Surg; 2000 Apr; 31(4):678-90. PubMed ID: 10753275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts.
    Ballarin F; Faggiano E; Manzoni A; Quarteroni A; Rozza G; Ippolito S; Antona C; Scrofani R
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1373-1399. PubMed ID: 28289915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A mathematical model of hemodynamic processes for distal pulse wave formation].
    Fedotov AA
    Biofizika; 2015; 60(2):343-7. PubMed ID: 26016031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical modelling of triple arterial stenoses.
    Ang KC; Mazumdar J
    Australas Phys Eng Sci Med; 1995 Jun; 18(2):89-94. PubMed ID: 7669027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow capacities of arterial grafts for coronary artery bypass grafting.
    Kawasuji M; Tedoriya T; Takemura H; Sakakibara N; Taki J; Watanabe Y
    Ann Thorac Surg; 1993 Oct; 56(4):957-62. PubMed ID: 8215674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolving the hemodynamic inverse problem.
    Quick CM; Berger DS; Stewart RH; Laine GA; Hartley CJ; Noordergraaf A
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):361-8. PubMed ID: 16532762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.
    Boileau E; Nithiarasu P; Blanco PJ; Müller LO; Fossan FE; Hellevik LR; Donders WP; Huberts W; Willemet M; Alastruey J
    Int J Numer Method Biomed Eng; 2015 Oct; 31(10):. PubMed ID: 26100764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Experimental simulation study on EC-IC bypass: Part 2, Hemodynamics of superficial temporal artery and clinical application of the stenosis model].
    Nagasawa S; Kikuchi H; Ohtsuki H; Moritake K; Yonekawa Y
    No Shinkei Geka; 1989 Feb; 17(2):125-32. PubMed ID: 2733806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2001 Dec; 123(6):548-57. PubMed ID: 11783725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation.
    Canić S; Hartley CJ; Rosenstrauch D; Tambaca J; Guidoboni G; Mikelić A
    Ann Biomed Eng; 2006 Apr; 34(4):575-92. PubMed ID: 16550449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of 1D blood flow models of the human arterial network to differential pressure predictions.
    Johnson DA; Rose WC; Edwards JW; Naik UP; Beris AN
    J Biomech; 2011 Mar; 44(5):869-76. PubMed ID: 21236432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm.
    Zaman A; Ali N; Anwar Bég O
    Med Biol Eng Comput; 2016 Sep; 54(9):1423-36. PubMed ID: 26541601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.