BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22775504)

  • 1. Induction of palate epithelial mesenchymal transition by transforming growth factor β3 signaling.
    Jalali A; Zhu X; Liu C; Nawshad A
    Dev Growth Differ; 2012 Aug; 54(6):633-48. PubMed ID: 22775504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGFbeta3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex.
    Nawshad A; Medici D; Liu CC; Hay ED
    J Cell Sci; 2007 May; 120(Pt 9):1646-53. PubMed ID: 17452626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of transforming growth factor β induced cell cycle arrest in palate development.
    Iordanskaia T; Nawshad A
    J Cell Physiol; 2011 May; 226(5):1415-24. PubMed ID: 20945347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT).
    Nawshad A; LaGamba D; Hay ED
    Arch Oral Biol; 2004 Sep; 49(9):675-89. PubMed ID: 15275855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) beta3.
    Ahmed S; Liu CC; Nawshad A
    Dev Biol; 2007 Sep; 309(2):193-207. PubMed ID: 17698055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-β activates c-Myc to promote palatal growth.
    Zhu X; Ozturk F; Liu C; Oakley GG; Nawshad A
    J Cell Biochem; 2012 Oct; 113(10):3069-85. PubMed ID: 22573578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development.
    Nawshad A; Hay ED
    J Cell Biol; 2003 Dec; 163(6):1291-301. PubMed ID: 14691138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression.
    He F; Xiong W; Wang Y; Li L; Liu C; Yamagami T; Taketo MM; Zhou C; Chen Y
    Dev Biol; 2011 Feb; 350(2):511-9. PubMed ID: 21185284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGFβ3 regulates periderm removal through ΔNp63 in the developing palate.
    Hu L; Liu J; Li Z; Ozturk F; Gurumurthy C; Romano RA; Sinha S; Nawshad A
    J Cell Physiol; 2015 Jun; 230(6):1212-25. PubMed ID: 25358290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of epithelial-mesenchymal transition in palatal fusion.
    Yu W; Ruest LB; Svoboda KK
    Exp Biol Med (Maywood); 2009 May; 234(5):483-91. PubMed ID: 19234053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disintegration of the medial epithelial seam: is cell death important in palatogenesis?
    Iseki S
    Dev Growth Differ; 2011 Feb; 53(2):259-68. PubMed ID: 21338351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion.
    Ke CY; Xiao WL; Chen CM; Lo LJ; Wong FH
    Sci Rep; 2015 Aug; 5():12791. PubMed ID: 26240017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ephrin reverse signaling mediates palatal fusion and epithelial-to-mesenchymal transition independently of Tgfß3.
    Serrano MJ; Liu J; Svoboda KK; Nawshad A; Benson MD
    J Cell Physiol; 2015 Dec; 230(12):2961-72. PubMed ID: 25893671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression of TGF-β3 for epithelial-mesenchyme transdifferentiated MEE in palatogenesis.
    Nakajima A; Tanaka E; Ito Y; Maeno M; Iwata K; Shimizu N; Shuler CF
    J Mol Histol; 2010 Dec; 41(6):343-55. PubMed ID: 20967564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGFbeta3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro.
    Sun D; Vanderburg CR; Odierna GS; Hay ED
    Development; 1998 Jan; 125(1):95-105. PubMed ID: 9389667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-200b regulates cell migration via Zeb family during mouse palate development.
    Shin JO; Nakagawa E; Kim EJ; Cho KW; Lee JM; Cho SW; Jung HS
    Histochem Cell Biol; 2012 Apr; 137(4):459-70. PubMed ID: 22261924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of twist during palate development.
    Yu W; Kamara H; Svoboda KK
    Dev Dyn; 2008 Oct; 237(10):2716-25. PubMed ID: 18697225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Expression of miRNAs in Laser Capture Microdissected Palate Medial Edge Epithelium from Tgfβ3(-/-) Mouse Fetuses.
    Warner D; Ding J; Mukhopadhyay P; Brock G; Smolenkova IA; Seelan RS; Webb CL; Wittliff JL; Greene RM; Pisano MM
    Microrna; 2015; 4(1):64-71. PubMed ID: 26159804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) β3 and is essential for mouse palatogenesis.
    Wu BX; Li A; Lei L; Kaneko S; Wallace C; Li X; Li Z
    J Biol Chem; 2017 Nov; 292(44):18091-18097. PubMed ID: 28912269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.