These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22775552)

  • 1. Effect of increased pCO(2) on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms.
    Ray JL; Töpper B; An S; Silyakova A; Spindelböck J; Thyrhaug R; DuBow MS; Thingstad TF; Sandaa RA
    FEMS Microbiol Ecol; 2012 Dec; 82(3):713-23. PubMed ID: 22775552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.
    Kerfahi D; Hall-Spencer JM; Tripathi BM; Milazzo M; Lee J; Adams JM
    Microb Ecol; 2014 May; 67(4):819-28. PubMed ID: 24493461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidification decreases microbial community diversity in the Salish Sea, a region with naturally high pCO2.
    Crummett LT
    PLoS One; 2020; 15(10):e0241183. PubMed ID: 33112901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment.
    Tait K; Laverock B; Shaw J; Somerfield PJ; Widdicombe S
    Environ Microbiol Rep; 2013 Dec; 5(6):851-60. PubMed ID: 24249294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater.
    Abell GC; Bowman JP
    FEMS Microbiol Ecol; 2005 Aug; 53(3):379-91. PubMed ID: 16329957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef.
    Witt V; Wild C; Anthony KR; Diaz-Pulido G; Uthicke S
    Environ Microbiol; 2011 Nov; 13(11):2976-89. PubMed ID: 21906222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and vertical distributions of bacterioplankton at the Gray's Reef National Marine Sanctuary.
    Lu X; Sun S; Zhang YQ; Hollibaugh JT; Mou X
    Appl Environ Microbiol; 2015 Feb; 81(3):910-7. PubMed ID: 25416764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of rare and abundant bacteria in surface waters of the Southern Adriatic Sea.
    Quero GM; Luna GM
    Mar Genomics; 2014 Oct; 17():9-15. PubMed ID: 24736045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial carbon processing by generalist species in the coastal ocean.
    Mou X; Sun S; Edwards RA; Hodson RE; Moran MA
    Nature; 2008 Feb; 451(7179):708-11. PubMed ID: 18223640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of culturable bacteria in deep-sea water from the South Atlantic Ocean.
    Kai W; Peisheng Y; Rui M; Wenwen J; Zongze S
    Bioengineered; 2017 Sep; 8(5):572-584. PubMed ID: 28140758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of growth conditions on siderophore producing bacteria and siderophore production from Indian Ocean sector of Southern Ocean.
    Sinha AK; Parli Venkateswaran B; Tripathy SC; Sarkar A; Prabhakaran S
    J Basic Microbiol; 2019 Apr; 59(4):412-424. PubMed ID: 30672596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion of Cultured Bacterial Diversity by Large-Scale Dilution-to-Extinction Culturing from a Single Seawater Sample.
    Yang SJ; Kang I; Cho JC
    Microb Ecol; 2016 Jan; 71(1):29-43. PubMed ID: 26573832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential responses of marine, mesohaline and oligohaline bacterial communities to the addition of terrigenous carbon.
    Herlemann DPR; Manecki M; Dittmar T; Jürgens K
    Environ Microbiol; 2017 Aug; 19(8):3098-3117. PubMed ID: 28474480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean.
    Kolber ZS; Plumley FG; Lang AS; Beatty JT; Blankenship RE; VanDover CL; Vetriani C; Koblizek M; Rathgeber C; Falkowski PG
    Science; 2001 Jun; 292(5526):2492-5. PubMed ID: 11431568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO(2) flux in the Mississippi River plume.
    John DE; Wang ZA; Liu X; Byrne RH; Corredor JE; López JM; Cabrera A; Bronk DA; Tabita FR; Paul JH
    ISME J; 2007 Oct; 1(6):517-31. PubMed ID: 18043653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High bicarbonate assimilation in the dark by Arctic bacteria.
    Alonso-Sáez L; Galand PE; Casamayor EO; Pedrós-Alió C; Bertilsson S
    ISME J; 2010 Dec; 4(12):1581-90. PubMed ID: 20555365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and distribution of pigmented heterotrophic bacteria in marine environments.
    Du H; Jiao N; Hu Y; Zeng Y
    FEMS Microbiol Ecol; 2006 Jul; 57(1):92-105. PubMed ID: 16819953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion.
    Héry M; Volant A; Garing C; Luquot L; Elbaz Poulichet F; Gouze P
    FEMS Microbiol Ecol; 2014 Dec; 90(3):922-34. PubMed ID: 25348057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-associated extracellular enzyme activity and bacterial community composition across the Canadian Arctic Ocean.
    Kellogg CT; Deming JW
    FEMS Microbiol Ecol; 2014 Aug; 89(2):360-75. PubMed ID: 24666253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.