These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 22776090)
1. Molecular regulation of seed and fruit set. Ruan YL; Patrick JW; Bouzayen M; Osorio S; Fernie AR Trends Plant Sci; 2012 Nov; 17(11):656-65. PubMed ID: 22776090 [TBL] [Abstract][Full Text] [Related]
2. microRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato. da Silva EM; Silva GFFE; Bidoia DB; da Silva Azevedo M; de Jesus FA; Pino LE; Peres LEP; Carrera E; López-Díaz I; Nogueira FTS Plant J; 2017 Oct; 92(1):95-109. PubMed ID: 28715118 [TBL] [Abstract][Full Text] [Related]
3. Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. Moriguchi R; Ohata K; Kanahama K; Takahashi H; Nishiyama M; Kanayama Y J Plant Physiol; 2011 Nov; 168(16):1927-33. PubMed ID: 21683470 [TBL] [Abstract][Full Text] [Related]
4. The role of ethylene in the regulation of ovary senescence and fruit set in tomato (Solanum lycopersicum). Shinozaki Y; Ezura H; Ariizumi T Plant Signal Behav; 2018 Apr; 13(4):e1146844. PubMed ID: 26934126 [TBL] [Abstract][Full Text] [Related]
5. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. de Jong M; Wolters-Arts M; García-Martínez JL; Mariani C; Vriezen WH J Exp Bot; 2011 Jan; 62(2):617-26. PubMed ID: 20937732 [TBL] [Abstract][Full Text] [Related]
6. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Mounet F; Moing A; Kowalczyk M; Rohrmann J; Petit J; Garcia V; Maucourt M; Yano K; Deborde C; Aoki K; Bergès H; Granell A; Fernie AR; Bellini C; Rothan C; Lemaire-Chamley M J Exp Bot; 2012 Aug; 63(13):4901-17. PubMed ID: 22844095 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Carrera E; Ruiz-Rivero O; Peres LE; Atares A; Garcia-Martinez JL Plant Physiol; 2012 Nov; 160(3):1581-96. PubMed ID: 22942390 [TBL] [Abstract][Full Text] [Related]
8. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Ko HY; Ho LH; Neuhaus HE; Guo WJ Plant Physiol; 2021 Dec; 187(4):2230-2245. PubMed ID: 34618023 [TBL] [Abstract][Full Text] [Related]
9. The role of auxin and gibberellin in tomato fruit set. de Jong M; Mariani C; Vriezen WH J Exp Bot; 2009; 60(5):1523-32. PubMed ID: 19321650 [TBL] [Abstract][Full Text] [Related]
11. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Kang C; Darwish O; Geretz A; Shahan R; Alkharouf N; Liu Z Plant Cell; 2013 Jun; 25(6):1960-78. PubMed ID: 23898027 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Gu T; Jia S; Huang X; Wang L; Fu W; Huo G; Gan L; Ding J; Li Y Planta; 2019 Jul; 250(1):145-162. PubMed ID: 30949762 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. Serrani JC; Carrera E; Ruiz-Rivero O; Gallego-Giraldo L; Peres LE; García-Martínez JL Plant Physiol; 2010 Jun; 153(2):851-62. PubMed ID: 20388661 [TBL] [Abstract][Full Text] [Related]
14. Aberrant Stamen Development is Associated with Parthenocarpic Fruit Set Through Up-Regulation of Gibberellin Biosynthesis in Tomato. Okabe Y; Yamaoka T; Ariizumi T; Ushijima K; Kojima M; Takebayashi Y; Sakakibara H; Kusano M; Shinozaki Y; Pulungan SI; Kubo Y; Nakano R; Ezura H Plant Cell Physiol; 2019 Jan; 60(1):38-51. PubMed ID: 30192961 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). Li J; Wu Z; Cui L; Zhang T; Guo Q; Xu J; Jia L; Lou Q; Huang S; Li Z; Chen J Plant Cell Physiol; 2014 Jul; 55(7):1325-42. PubMed ID: 24733865 [TBL] [Abstract][Full Text] [Related]
16. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin. Zhu Z; Liang H; Chen G; Li F; Wang Y; Liao C; Hu Z Plant Cell Rep; 2019 Sep; 38(9):1053-1064. PubMed ID: 31123809 [TBL] [Abstract][Full Text] [Related]
17. Morpho-Physiological and Transcriptome Changes in Tomato Anthers of Different Developmental Stages under Drought Stress. Lamin-Samu AT; Farghal M; Ali M; Lu G Cells; 2021 Jul; 10(7):. PubMed ID: 34359978 [TBL] [Abstract][Full Text] [Related]
18. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Zanor MI; Osorio S; Nunes-Nesi A; Carrari F; Lohse M; Usadel B; Kühn C; Bleiss W; Giavalisco P; Willmitzer L; Sulpice R; Zhou YH; Fernie AR Plant Physiol; 2009 Jul; 150(3):1204-18. PubMed ID: 19439574 [TBL] [Abstract][Full Text] [Related]
19. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. Ezura K; Nomura Y; Ariizumi T J Exp Bot; 2023 Oct; 74(20):6254-6268. PubMed ID: 37279328 [TBL] [Abstract][Full Text] [Related]
20. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Jia H; Jiu S; Zhang C; Wang C; Tariq P; Liu Z; Wang B; Cui L; Fang J Plant Biotechnol J; 2016 Oct; 14(10):2045-65. PubMed ID: 27005823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]