BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22776290)

  • 21. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y
    J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring Supramolecular Interactions between the Extracellular-Matrix-Derived Minimalist Bioactive Peptide and Nanofibrillar Cellulose for the Development of an Advanced Biomolecular Scaffold.
    Kaur H; Sharma P; Pal VK; Sen S; Roy S
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1422-1436. PubMed ID: 36826412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization.
    Frisman I; Shachaf Y; Seliktar D; Bianco-Peled H
    Langmuir; 2011 Jun; 27(11):6977-86. PubMed ID: 21542599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture.
    Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K
    J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering.
    Ng SS; Su K; Li C; Chan-Park MB; Wang DA; Chan V
    Acta Biomater; 2012 Jan; 8(1):244-52. PubMed ID: 21906699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro.
    Yan J; Yang L; Wang G; Xiao Y; Zhang B; Qi N
    J Biomater Appl; 2010 Mar; 24(7):625-37. PubMed ID: 19451182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermoreversible protein hydrogel as cell scaffold.
    Yan H; Saiani A; Gough JE; Miller AF
    Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
    Chau M; Sriskandha SE; Pichugin D; Thérien-Aubin H; Nykypanchuk D; Chauve G; Méthot M; Bouchard J; Gang O; Kumacheva E
    Biomacromolecules; 2015 Aug; 16(8):2455-62. PubMed ID: 26102157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoreversible hydrogel for in situ generation and release of HepG2 spheroids.
    Wang D; Cheng D; Guan Y; Zhang Y
    Biomacromolecules; 2011 Mar; 12(3):578-84. PubMed ID: 21247096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation.
    Luckanagul J; Lee LA; Nguyen QL; Sitasuwan P; Yang X; Shazly T; Wang Q
    Biomacromolecules; 2012 Dec; 13(12):3949-58. PubMed ID: 23148483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering three-dimensional cell mechanical microenvironment with hydrogels.
    Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ
    Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
    Jeong SI; Krebs MD; Bonino CA; Samorezov JE; Khan SA; Alsberg E
    Tissue Eng Part A; 2011 Jan; 17(1-2):59-70. PubMed ID: 20672984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A saccharide-based supramolecular hydrogel for cell culture.
    Wang W; Wang H; Ren C; Wang J; Tan M; Shen J; Yang Z; Wang PG; Wang L
    Carbohydr Res; 2011 Jun; 346(8):1013-7. PubMed ID: 21482421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils.
    Aouada FA; de Moura MR; Orts WJ; Mattoso LH
    J Agric Food Chem; 2011 Sep; 59(17):9433-42. PubMed ID: 21793537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.