These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 2277632)

  • 1. A GCN4 protein recognition element is not sufficient for GCN4-dependent regulation of transcription in the ARO7 promoter of Saccharomyces cerevisiae.
    Schmidheini T; Mösch HU; Graf R; Braus GH
    Mol Gen Genet; 1990 Oct; 224(1):57-64. PubMed ID: 2277632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three GCN4 responsive elements act synergistically as upstream and as TATA-like elements in the yeast TRP4 promoter.
    Mösch HU; Graf R; Schmidheini T; Braus G
    EMBO J; 1990 Sep; 9(9):2951-7. PubMed ID: 1697266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast.
    Hope IA; Struhl K
    Cell; 1985 Nov; 43(1):177-88. PubMed ID: 3907851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element.
    Brandl CJ; Struhl K
    Mol Cell Biol; 1990 Aug; 10(8):4256-65. PubMed ID: 2196450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase.
    Zaman Z; Bowman SB; Kornfeld GD; Brown AJ; Dawes IW
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):855-62. PubMed ID: 10359673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression and redirection of Saccharomyces cerevisiae tRNA synthesis from upstream of the transcriptional start site.
    Léveillard T; Kassavetis GA; Geiduschek EP
    J Biol Chem; 1993 Feb; 268(5):3594-603. PubMed ID: 8429036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression.
    Wek RC; Ramirez M; Jackson BM; Hinnebusch AG
    Mol Cell Biol; 1990 Jun; 10(6):2820-31. PubMed ID: 2188100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A REB1-binding site is required for GCN4-independent ILV1 basal level transcription and can be functionally replaced by an ABF1-binding site.
    Remacle JE; Holmberg S
    Mol Cell Biol; 1992 Dec; 12(12):5516-26. PubMed ID: 1448083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty2 elements of Saccharomyces cerevisiae.
    Türkel S; Farabaugh PJ
    Mol Cell Biol; 1993 Apr; 13(4):2091-103. PubMed ID: 8384304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation.
    Jackson BM; Drysdale CM; Natarajan K; Hinnebusch AG
    Mol Cell Biol; 1996 Oct; 16(10):5557-71. PubMed ID: 8816468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast upstream activator protein GCN4 can stimulate transcription when its binding site replaces the TATA element.
    Chen W; Struhl K
    EMBO J; 1989 Jan; 8(1):261-8. PubMed ID: 2653813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single point mutation results in a constitutively activated and feedback-resistant chorismate mutase of Saccharomyces cerevisiae.
    Schmidheini T; Sperisen P; Paravicini G; Hütter R; Braus G
    J Bacteriol; 1989 Mar; 171(3):1245-53. PubMed ID: 2646272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase.
    Roussou I; Thireos G; Hauge BM
    Mol Cell Biol; 1988 May; 8(5):2132-9. PubMed ID: 3290651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG
    Mol Cell Biol; 1985 Sep; 5(9):2349-60. PubMed ID: 3915540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene.
    Devlin C; Tice-Baldwin K; Shore D; Arndt KT
    Mol Cell Biol; 1991 Jul; 11(7):3642-51. PubMed ID: 1904543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional control of yeast phosphoglycerate mutase-encoding gene.
    Rodicio R; Heinisch JJ; Hollenberg CP
    Gene; 1993 Mar; 125(2):125-33. PubMed ID: 8462867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription.
    O'Connell KF; Surdin-Kerjan Y; Baker RE
    Mol Cell Biol; 1995 Apr; 15(4):1879-88. PubMed ID: 7891681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional activation of yeast nucleotide biosynthetic gene ADE4 by GCN4.
    Mösch HU; Scheier B; Lahti R; Mäntsäla P; Braus GH
    J Biol Chem; 1991 Oct; 266(30):20453-6. PubMed ID: 1939099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation by positive and negative translational regulators of GCN4.
    Cigan AM; Foiani M; Hannig EM; Hinnebusch AG
    Mol Cell Biol; 1991 Jun; 11(6):3217-28. PubMed ID: 2038327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The general control activator protein GCN4 is essential for a basal level of ARO3 gene expression in Saccharomyces cerevisiae.
    Paravicini G; Mösch HU; Schmidheini T; Braus G
    Mol Cell Biol; 1989 Jan; 9(1):144-51. PubMed ID: 2564634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.