These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 2277632)
21. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Abastado JP; Miller PF; Jackson BM; Hinnebusch AG Mol Cell Biol; 1991 Jan; 11(1):486-96. PubMed ID: 1986242 [TBL] [Abstract][Full Text] [Related]
22. Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Ty1 retrotransposons. Morillon A; Bénard L; Springer M; Lesage P Mol Cell Biol; 2002 Apr; 22(7):2078-88. PubMed ID: 11884596 [TBL] [Abstract][Full Text] [Related]
23. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Ramirez M; Wek RC; Hinnebusch AG Mol Cell Biol; 1991 Jun; 11(6):3027-36. PubMed ID: 2038314 [TBL] [Abstract][Full Text] [Related]
24. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Drysdale CM; Dueñas E; Jackson BM; Reusser U; Braus GH; Hinnebusch AG Mol Cell Biol; 1995 Mar; 15(3):1220-33. PubMed ID: 7862116 [TBL] [Abstract][Full Text] [Related]
25. Cloning, primary structure and regulation of the ARO4 gene, encoding the tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae. Künzler M; Paravicini G; Egli CM; Irniger S; Braus GH Gene; 1992 Apr; 113(1):67-74. PubMed ID: 1348717 [TBL] [Abstract][Full Text] [Related]
26. Activation and repression of the yeast ARO3 gene by global transcription factors. Künzler M; Springer C; Braus GH Mol Microbiol; 1995 Jan; 15(1):167-78. PubMed ID: 7752892 [TBL] [Abstract][Full Text] [Related]
27. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame. Eiznhamer DA; Ashburner BP; Jackson JC; Gardenour KR; Lopes JM Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853 [TBL] [Abstract][Full Text] [Related]
28. CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. Collart MA; Struhl K EMBO J; 1993 Jan; 12(1):177-86. PubMed ID: 8428577 [TBL] [Abstract][Full Text] [Related]
29. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Hannig EM; Hinnebusch AG Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370 [TBL] [Abstract][Full Text] [Related]
30. Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. Krappmann S; Lipscomb WN; Braus GH Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13585-90. PubMed ID: 11095720 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Harshman KD; Moye-Rowley WS; Parker CS Cell; 1988 Apr; 53(2):321-30. PubMed ID: 2834068 [TBL] [Abstract][Full Text] [Related]
32. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mountain HA; Byström AS; Korch C Mol Microbiol; 1993 Jan; 7(2):215-28. PubMed ID: 8446029 [TBL] [Abstract][Full Text] [Related]
33. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA. Williams NP; Hinnebusch AG; Donahue TF Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7515-9. PubMed ID: 2678106 [TBL] [Abstract][Full Text] [Related]
34. Synergistic transcriptional enhancement does not depend on the number of acidic activation domains bound to the promoter. Oliviero S; Struhl K Proc Natl Acad Sci U S A; 1991 Jan; 88(1):224-8. PubMed ID: 1898773 [TBL] [Abstract][Full Text] [Related]
35. Analysis of Saccharomyces cerevisiae his3 transcription in vitro: biochemical support for multiple mechanisms of transcription. Ponticelli AS; Struhl K Mol Cell Biol; 1990 Jun; 10(6):2832-9. PubMed ID: 2188101 [TBL] [Abstract][Full Text] [Related]
36. Regulation of chorismate mutase in Saccharomyces cerevisiae. Brown JF; Dawes IW Mol Gen Genet; 1990 Jan; 220(2):283-8. PubMed ID: 2183005 [TBL] [Abstract][Full Text] [Related]
37. The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae. Hannig EM; Williams NP; Wek RC; Hinnebusch AG Genetics; 1990 Nov; 126(3):549-62. PubMed ID: 2249755 [TBL] [Abstract][Full Text] [Related]
38. Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Hill DE; Hope IA; Macke JP; Struhl K Science; 1986 Oct; 234(4775):451-7. PubMed ID: 3532321 [TBL] [Abstract][Full Text] [Related]
39. Mutations that define the optimal half-site for binding yeast GCN4 activator protein and identify an ATF/CREB-like repressor that recognizes similar DNA sites. Sellers JW; Vincent AC; Struhl K Mol Cell Biol; 1990 Oct; 10(10):5077-86. PubMed ID: 2204805 [TBL] [Abstract][Full Text] [Related]
40. Autoregulation of the yeast lysyl-tRNA synthetase gene GCD5/KRS1 by translational and transcriptional control mechanisms. Lanker S; Bushman JL; Hinnebusch AG; Trachsel H; Mueller PP Cell; 1992 Aug; 70(4):647-57. PubMed ID: 1505029 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]