BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22776375)

  • 21. Slow leakage of Ca-dipicolinic acid from individual bacillus spores during initiation of spore germination.
    Wang S; Setlow P; Li YQ
    J Bacteriol; 2015 Mar; 197(6):1095-103. PubMed ID: 25583976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering.
    Zhang P; Kong L; Setlow P; Li YQ
    Appl Environ Microbiol; 2010 Mar; 76(6):1796-805. PubMed ID: 20097820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.
    Banawas S; Korza G; Paredes-Sabja D; Li Y; Hao B; Setlow P; Sarker MR
    Food Microbiol; 2015 Sep; 50():83-7. PubMed ID: 25998819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex.
    Rao L; Liao X; Setlow P
    Lett Appl Microbiol; 2016 Oct; 63(4):247-53. PubMed ID: 27424522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species.
    Kong L; Zhang P; Yu J; Setlow P; Li YQ
    Anal Chem; 2010 Oct; 82(20):8717-24. PubMed ID: 20873796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host serum factor triggers germination of Clostridium perfringens spores lacking the cortex hydrolysis machinery.
    Paredes-Sabja D; Sarker MR
    J Med Microbiol; 2011 Dec; 60(Pt 12):1734-1741. PubMed ID: 21799201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors affecting variability in time between addition of nutrient germinants and rapid dipicolinic acid release during germination of spores of Bacillus species.
    Zhang P; Garner W; Yi X; Yu J; Li YQ; Setlow P
    J Bacteriol; 2010 Jul; 192(14):3608-19. PubMed ID: 20472791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cortex peptidoglycan structure and cortex hydrolysis on the kinetics of Ca(2+)-dipicolinic acid release during Bacillus subtilis spore germination.
    Zhang P; Thomas S; Li YQ; Setlow P
    J Bacteriol; 2012 Feb; 194(3):646-52. PubMed ID: 22123250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-spore germination analyses reveal that calcium released during
    Ribis JW; Melo L; Shrestha S; Giacalone D; Rodriguez EE; Shen A; Rohlfing A
    mSphere; 2023 Aug; 8(4):e0000523. PubMed ID: 37338207
    [No Abstract]   [Full Text] [Related]  

  • 30. Killing of bacterial spores by dodecylamine and its effects on spore inner membrane properties.
    Mokashi S; Kanaan J; Craft DL; Byrd B; Zenick B; Laue M; Korza G; Mok WWK; Setlow P
    J Appl Microbiol; 2020 Dec; 129(6):1511-1522. PubMed ID: 32492264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S; Paredes-Sabja D; Torres JA; Sarker MR
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological role of carbon dioxide in spore germination of Clostridium perfringens S40.
    Kato S; Masayama A; Yoshimura T; Hemmi H; Tsunoda H; Kihara T; Moriyama R
    J Biosci Bioeng; 2009 Dec; 108(6):477-83. PubMed ID: 19914579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity.
    Shimamoto S; Moriyama R; Sugimoto K; Miyata S; Makino S
    J Bacteriol; 2001 Jun; 183(12):3742-51. PubMed ID: 11371539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers.
    Kong L; Zhang P; Setlow P; Li YQ
    Anal Chem; 2010 May; 82(9):3840-7. PubMed ID: 20369827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Germination of spores of Bacillus subtilis with dodecylamine.
    Setlow B; Cowan AE; Setlow P
    J Appl Microbiol; 2003; 95(3):637-48. PubMed ID: 12911713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination.
    Francis MB; Allen CA; Sorg JA
    J Bacteriol; 2015 Jul; 197(14):2276-83. PubMed ID: 25917906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase.
    Donnelly ML; Fimlaid KA; Shen A
    J Bacteriol; 2016 Jun; 198(11):1694-1707. PubMed ID: 27044622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of High-Pressure Treatment on Spores of Clostridium Species.
    Doona CJ; Feeherry FE; Setlow B; Wang S; Li W; Nichols FC; Talukdar PK; Sarker MR; Li YQ; Shen A; Setlow P
    Appl Environ Microbiol; 2016 Sep; 82(17):5287-97. PubMed ID: 27316969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969.
    Banawas S; Paredes-Sabja D; Setlow P; Sarker MR
    Microbiology (Reading); 2016 Nov; 162(11):1972-1983. PubMed ID: 27692042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.