These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22776405)

  • 1. A genetic bistable switch utilizing nonlinear protein degradation.
    Huang D; Holtz WJ; Maharbiz MM
    J Biol Eng; 2012 Jul; 6(1):9. PubMed ID: 22776405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Orthogonal Permease-Inducer-Repressor Feedback Loop Shows Bistability.
    Gnügge R; Dharmarajan L; Lang M; Stelling J
    ACS Synth Biol; 2016 Oct; 5(10):1098-1107. PubMed ID: 27148753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent Bistable Switches from the Incoherent Feed-Forward Signaling of a Positive Feedback Loop.
    Dey A; Barik D
    ACS Synth Biol; 2021 Nov; 10(11):3117-3128. PubMed ID: 34694110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust, tunable genetic memory from protein sequestration combined with positive feedback.
    Shopera T; Henson WR; Ng A; Lee YJ; Ng K; Moon TS
    Nucleic Acids Res; 2015 Oct; 43(18):9086-94. PubMed ID: 26384562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch.
    Chen D; Arkin AP
    Mol Syst Biol; 2012; 8():620. PubMed ID: 23089683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building biological memory by linking positive feedback loops.
    Chang DE; Leung S; Atkinson MR; Reifler A; Forger D; Ninfa AJ
    Proc Natl Acad Sci U S A; 2010 Jan; 107(1):175-80. PubMed ID: 20018658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of an in vitro bistable circuit from synthetic transcriptional switches.
    Kim J; White KS; Winfree E
    Mol Syst Biol; 2006; 2():68. PubMed ID: 17170763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothetical biomolecular probe based on a genetic switch with tunable symmetry and stability.
    Martyushenko N; Johansen SH; Ghim CM; Almaas E
    BMC Syst Biol; 2016 Jun; 10(1):39. PubMed ID: 27266276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a bistable switch to control cellular uptake.
    Oyarzún DA; Chaves M
    J R Soc Interface; 2015 Dec; 12(113):20150618. PubMed ID: 26674196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches.
    Pfeuty B; Kaneko K
    Phys Biol; 2009 Nov; 6(4):046013. PubMed ID: 19910671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks.
    Tian XJ; Zhang XP; Liu F; Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011926. PubMed ID: 19658748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin, heterogeneity, and interconversion of noncanonical bistable switches from the positive feedback loops under dual signaling.
    Das S; Barik D
    iScience; 2023 Apr; 26(4):106379. PubMed ID: 37034993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the interlocked positive feedback loops explaining the robust epigenetic switching in Candida albicans.
    Sriram K; Soliman S; Fages F
    J Theor Biol; 2009 May; 258(1):71-88. PubMed ID: 19490874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bistable genetic switch based on designable DNA-binding domains.
    Lebar T; Bezeljak U; Golob A; Jerala M; Kadunc L; Pirš B; Stražar M; Vučko D; Zupančič U; Benčina M; Forstnerič V; Gaber R; Lonzarić J; Majerle A; Oblak A; Smole A; Jerala R
    Nat Commun; 2014 Sep; 5():5007. PubMed ID: 25264186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tweaking biological switches through a better understanding of bistability behavior.
    Chatterjee A; Kaznessis YN; Hu WS
    Curr Opin Biotechnol; 2008 Oct; 19(5):475-81. PubMed ID: 18804166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability.
    Ferrell JE
    Curr Opin Cell Biol; 2002 Apr; 14(2):140-8. PubMed ID: 11891111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational method for the investigation of multistable systems and its application to genetic switches.
    Leon M; Woods ML; Fedorec AJ; Barnes CP
    BMC Syst Biol; 2016 Dec; 10(1):130. PubMed ID: 27927198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic bistable switches enhance robustness and accuracy of cell cycle transitions.
    Rombouts J; Gelens L
    PLoS Comput Biol; 2021 Jan; 17(1):e1008231. PubMed ID: 33411761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A delay model for noise-induced bi-directional switching.
    Lei J; He G; Liu H; Nie Q
    Nonlinearity; 2009 Dec; 22(12):2845-2859. PubMed ID: 20592956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsatile signaling of bistable switches reveal the distinct nature of pulse processing by mutual activation and mutual inhibition loop.
    Das S; Barik D
    J Theor Biol; 2022 May; 540():111075. PubMed ID: 35231494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.