These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 22776756)

  • 1. Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses.
    Chen Q; Wu W; Blanckaert K; Ma J; Huang G
    J Environ Manage; 2012 Nov; 110():116-24. PubMed ID: 22776756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and trend analysis of the water quality monitoring daily data in Nestos River Delta. Contribution to the sustainable management and results for the years 2000-2002.
    Psilovikos A; Margoni S; Psilovikos A
    Environ Monit Assess; 2006 May; 116(1-3):543-62. PubMed ID: 16779611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing water quality monitoring networks using continuous longitudinal monitoring data: a case study of Wen-Rui Tang River, Wenzhou, China.
    Mei K; Zhu Y; Liao L; Dahlgren R; Shang X; Zhang M
    J Environ Monit; 2011 Oct; 13(10):2755-62. PubMed ID: 21915414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of on-line river water quality monitoring systems using the entropy theory: a case study.
    Karamouz M; Nokhandan AK; Kerachian R; Maksimovic C
    Environ Monit Assess; 2009 Aug; 155(1-4):63-81. PubMed ID: 18663591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal design of river monitoring network in Taizihe River by matter element analysis.
    Wang H; Liu Z; Sun L; Luo Q
    PLoS One; 2015; 10(5):e0127535. PubMed ID: 26023785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of artificial cutoff on a monitoring system and the water quality of the Keelung River.
    Lo SL; Kuo JT; Wang SM
    Water Sci Technol; 2002; 46(11-12):231-6. PubMed ID: 12523759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient method for optimal placing of water quality monitoring stations for an ungauged basin.
    Lee C; Paik K; Yoo do G; Kim JH
    J Environ Manage; 2014 Jan; 132():24-31. PubMed ID: 24269932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An online water quality monitoring and management system developed for the Liming River basin in Daqing, China.
    Yang W; Nan J; Sun D
    J Environ Manage; 2008 Jul; 88(2):318-25. PubMed ID: 17462812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of river water quality monitoring stations by principal component analysis.
    Ouyang Y
    Water Res; 2005 Jul; 39(12):2621-35. PubMed ID: 15993926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques.
    Nnane DE
    Sci Total Environ; 2011 Nov; 409(24):5188-95. PubMed ID: 21962927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal variation analysis of hydrochemical characteristics in the Luanhe River Basin, China.
    Xie Y; Li X; Wang H; Li W
    Water Sci Technol; 2013; 67(6):1332-8. PubMed ID: 23508159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing an environmental water quality monitoring program for Haraz River in Northern Iran.
    Tavakol M; Arjmandi R; Shayeghi M; Monavari SM; Karbassi A
    Environ Monit Assess; 2017 Aug; 189(8):410. PubMed ID: 28733786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal water quality monitoring network design for river systems.
    Telci IT; Nam K; Guan J; Aral MM
    J Environ Manage; 2009 Jul; 90(10):2987-98. PubMed ID: 19501953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrochemical evaluation of surface water quality and pollution source apportionment in the Luan River basin, China.
    Wang H; Li X; Xie Y
    Water Sci Technol; 2011; 64(10):2119-25. PubMed ID: 22105137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of spatial patterns in river water quality using chemometric pattern recognition techniques.
    Gazzaz NM; Yusoff MK; Ramli MF; Aris AZ; Juahir H
    Mar Pollut Bull; 2012 Apr; 64(4):688-98. PubMed ID: 22330076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)--a case study.
    Singh KP; Malik A; Mohan D; Sinha S
    Water Res; 2004 Nov; 38(18):3980-92. PubMed ID: 15380988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-dimensional water-quality model for a winding and topographically complicated river.
    Zeng GM; Yuan XZ; Yin YY; Yang CP
    J Environ Manage; 2001 Jan; 61(1):113-21. PubMed ID: 11381455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic algorithm usage in water quality monitoring networks optimization in Gediz (Turkey) river basin.
    Icaga Y
    Environ Monit Assess; 2005 Sep; 108(1-3):261-77. PubMed ID: 16160791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran).
    Razmkhah H; Abrishamchi A; Torkian A
    J Environ Manage; 2010; 91(4):852-60. PubMed ID: 20056527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of optimal river water quality improvement programs using QUAL2K: a case study of Taihu Lake Basin, China.
    Zhang R; Qian X; Li H; Yuan X; Ye R
    Sci Total Environ; 2012 Aug; 431():278-85. PubMed ID: 22687438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.