These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22776831)

  • 21. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions.
    Li X; Zhang P; Lin CL; Johnson WP
    Environ Sci Technol; 2005 Jun; 39(11):4012-20. PubMed ID: 15984777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media: Influences of electrolyte, clay and humic acid.
    Han B; Liu W; Zhao X; Cai Z; Zhao D
    Sci Total Environ; 2017 Dec; 599-600():188-197. PubMed ID: 28475912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of carbon nanotubes on the transport and retention of bacteria in saturated porous media.
    Yang H; Tong M; Kim H
    Environ Sci Technol; 2013 Oct; 47(20):11537-44. PubMed ID: 24040844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Studies on fluorescent properties of multi-walled carbon nanotubes before and after concentrated nitric acid treatment].
    Sun WX; Huang ZP; Zhang L; Zhu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jan; 25(1):10-2. PubMed ID: 15852806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size.
    Kasel D; Bradford SA; Šimůnek J; Heggen M; Vereecken H; Klumpp E
    Water Res; 2013 Feb; 47(2):933-44. PubMed ID: 23228890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of solution chemistry on the release of multiwalled carbon nanotubes from silica surfaces.
    Yi P; Chen KL
    Environ Sci Technol; 2013; 47(21):12211-8. PubMed ID: 24079821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.
    Yang J; Bitter JL; Smith BA; Fairbrother DH; Ball WP
    Environ Sci Technol; 2013 Dec; 47(24):14034-43. PubMed ID: 24251816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of copper oxychloride-based fungicide particles in saturated quartz sand.
    M P; J S; J C NM; M AE; Lopez-Periago JE
    Environ Sci Technol; 2009 Dec; 43(23):8860-6. PubMed ID: 19943658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry.
    He J; Wang D; Zhang W; Zhou D
    Chemosphere; 2019 Nov; 235():643-650. PubMed ID: 31276877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-walled carbon nanotubes exhibit limited transport in soil columns.
    Jaisi DP; Elimelech M
    Environ Sci Technol; 2009 Dec; 43(24):9161-6. PubMed ID: 20000506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns.
    Lu Y; Xu X; Yang K; Lin D
    Environ Pollut; 2013 Nov; 182():269-77. PubMed ID: 23948360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition.
    Min YS; Bae EJ; Oh BS; Kang D; Park W
    J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes.
    Chen Z; Pierre D; He H; Tan S; Pham-Huy C; Hong H; Huang J
    Int J Pharm; 2011 Feb; 405(1-2):153-61. PubMed ID: 21145959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering.
    Gigault J; Grassl B; Lespes G
    Chemosphere; 2012 Jan; 86(2):177-82. PubMed ID: 22079301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.