These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 22776909)
1. Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Kim JY; Ahn SW; Lee SS; Kim JM Lab Chip; 2012 Aug; 12(16):2807-14. PubMed ID: 22776909 [TBL] [Abstract][Full Text] [Related]
2. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Yang S; Kim JY; Lee SJ; Lee SS; Kim JM Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348 [TBL] [Abstract][Full Text] [Related]
3. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316 [TBL] [Abstract][Full Text] [Related]
4. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819 [TBL] [Abstract][Full Text] [Related]
6. Poly(ethylene oxide) (PEO) and poly(vinyl pyrolidone) (PVP) induce different changes in the colloid stability of nanoparticles. McFarlane NL; Wagner NJ; Kaler EW; Lynch ML Langmuir; 2010 Sep; 26(17):13823-30. PubMed ID: 20684552 [TBL] [Abstract][Full Text] [Related]
7. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Choi YS; Seo KW; Lee SJ Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415 [TBL] [Abstract][Full Text] [Related]
8. DNA-Functionalized 100 nm Polymer Nanoparticles from Block Copolymer Micelles. Lee S; Yoon JH; Jo IS; Oh JS; Pine DJ; Shim TS; Yi GR Langmuir; 2018 Sep; 34(37):11042-11048. PubMed ID: 30124299 [TBL] [Abstract][Full Text] [Related]
9. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Nho HW; Yoon TH Lab Chip; 2013 Mar; 13(5):773-6. PubMed ID: 23340906 [TBL] [Abstract][Full Text] [Related]
10. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Nam J; Lim H; Kim D; Jung H; Shin S Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376 [TBL] [Abstract][Full Text] [Related]
11. Multiplex single particle analysis in microfluidics. Dannhauser D; Romeo G; Causa F; De Santo I; Netti PA Analyst; 2014 Oct; 139(20):5239-46. PubMed ID: 25133272 [TBL] [Abstract][Full Text] [Related]
12. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel. Del Giudice F; Sathish S; D'Avino G; Shen AQ Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161 [TBL] [Abstract][Full Text] [Related]
13. Electron microscopic study on aerosol-assisted synthesis of aluminum organophosphonates using flexible colloidal PS-b-PEO templates. Kimura T; Yamauchi Y Langmuir; 2012 Sep; 28(35):12901-8. PubMed ID: 22873793 [TBL] [Abstract][Full Text] [Related]
14. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels. Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347 [TBL] [Abstract][Full Text] [Related]
15. Continuous flow separation of particles within an asymmetric microfluidic device. Zhang X; Cooper JM; Monaghan PB; Haswell SJ Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220 [TBL] [Abstract][Full Text] [Related]
16. Superparamagnetic nanoparticle-polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity. Kell AJ; Somaskandan K; Stewart G; Bergeron MG; Simard B Langmuir; 2008 Apr; 24(7):3493-502. PubMed ID: 18290685 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857 [TBL] [Abstract][Full Text] [Related]
18. Influence of nanoparticle surface functionalization on the thermal stability of colloidal polystyrene films. Herzog G; Abul Kashem MM; Benecke G; Buffet A; Gehrke R; Perlich J; Schwartzkopf M; Körstgens V; Meier R; Niedermeier MA; Rawolle M; Ruderer MA; Müller-Buschbaum P; Wurth W; Roth SV Langmuir; 2012 May; 28(21):8230-7. PubMed ID: 22519820 [TBL] [Abstract][Full Text] [Related]
19. Improved separation of double-stranded DNA fragments by capillary electrophoresis using poly(ethylene oxide) solution containing colloids. Huang MF; Huang CC; Chang HT Electrophoresis; 2003 Sep; 24(17):2896-902. PubMed ID: 12973792 [TBL] [Abstract][Full Text] [Related]
20. Biopolymer microparticle and nanoparticle formation within a microfluidic device. Rondeau E; Cooper-White JJ Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]