BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22776989)

  • 1. Bethesda criteria for microsatellite instability testing: impact on the detection of new cases of Lynch syndrome.
    Serrano M; Lage P; Belga S; Filipe B; Francisco I; Rodrigues P; Fonseca R; Chaves P; Claro I; Albuquerque C; Pereira AD
    Fam Cancer; 2012 Dec; 11(4):571-8. PubMed ID: 22776989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BRAF mutation analysis is a valid tool to implement in Lynch syndrome diagnosis in patients classified according to the Bethesda guidelines.
    Molinari F; Signoroni S; Lampis A; Bertan C; Perrone F; Sala P; Mondini P; Crippa S; Bertario L; Frattini M
    Tumori; 2014; 100(3):315-20. PubMed ID: 25076244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taiwan hospital-based detection of Lynch syndrome distinguishes 2 types of microsatellite instabilities in colorectal cancers.
    Chang SC; Lin PC; Yang SH; Wang HS; Liang WY; Lin JK
    Surgery; 2010 May; 147(5):720-8. PubMed ID: 20045164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer.
    Pérez-Carbonell L; Ruiz-Ponte C; Guarinos C; Alenda C; Payá A; Brea A; Egoavil CM; Castillejo A; Barberá VM; Bessa X; Xicola RM; Rodríguez-Soler M; Sánchez-Fortún C; Acame N; Castellví-Bel S; Piñol V; Balaguer F; Bujanda L; De-Castro ML; Llor X; Andreu M; Carracedo A; Soto JL; Castells A; Jover R
    Gut; 2012 Jun; 61(6):865-72. PubMed ID: 21868491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high incidence of MSH6 mutations in Amsterdam criteria II-negative families tested in a diagnostic setting.
    Ramsoekh D; Wagner A; van Leerdam ME; Dinjens WN; Steyerberg EW; Halley DJ; Kuipers EJ; Dooijes D
    Gut; 2008 Nov; 57(11):1539-44. PubMed ID: 18625694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsatellite instability and novel mismatch repair gene mutations in northern Chinese population with hereditary non-polyposis colorectal cancer.
    Sheng JQ; Chan TL; Chan YW; Huang JS; Chen JG; Zhang MZ; Guo XL; Mu H; Chan AS; Li SR; Yuen ST; Leung SY
    Chin J Dig Dis; 2006; 7(4):197-205. PubMed ID: 17054581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer.
    Piñol V; Castells A; Andreu M; Castellví-Bel S; Alenda C; Llor X; Xicola RM; Rodríguez-Moranta F; Payá A; Jover R; Bessa X;
    JAMA; 2005 Apr; 293(16):1986-94. PubMed ID: 15855432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening for germline mutations of MLH1, MSH2, MSH6 and PMS2 genes in Slovenian colorectal cancer patients: implications for a population specific detection strategy of Lynch syndrome.
    Berginc G; Bracko M; Ravnik-Glavac M; Glavac D
    Fam Cancer; 2009; 8(4):421-9. PubMed ID: 19526325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive molecular analysis of mismatch repair gene defects in suspected Lynch syndrome (hereditary nonpolyposis colorectal cancer) cases.
    Mueller J; Gazzoli I; Bandipalliam P; Garber JE; Syngal S; Kolodner RD
    Cancer Res; 2009 Sep; 69(17):7053-61. PubMed ID: 19690142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers From GOG210: An NRG Oncology and Gynecologic Oncology Group Study.
    Goodfellow PJ; Billingsley CC; Lankes HA; Ali S; Cohn DE; Broaddus RJ; Ramirez N; Pritchard CC; Hampel H; Chassen AS; Simmons LV; Schmidt AP; Gao F; Brinton LA; Backes F; Landrum LM; Geller MA; DiSilvestro PA; Pearl ML; Lele SB; Powell MA; Zaino RJ; Mutch D
    J Clin Oncol; 2015 Dec; 33(36):4301-8. PubMed ID: 26552419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.
    Steinke V; Holzapfel S; Loeffler M; Holinski-Feder E; Morak M; Schackert HK; Görgens H; Pox C; Royer-Pokora B; von Knebel-Doeberitz M; Büttner R; Propping P; Engel C;
    Int J Cancer; 2014 Jul; 135(1):69-77. PubMed ID: 24493211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MLH1 promoter germline-methylation in selected probands of Chinese hereditary non-polyposis colorectal cancer families.
    Zhou HH; Yan SY; Zhou XY; Du X; Zhang TM; Cai X; Lu YM; Cai SJ; Shi DR
    World J Gastroenterol; 2008 Dec; 14(48):7329-34. PubMed ID: 19109866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of screening for Lynch syndrome among patients with colorectal cancer.
    Hampel H; Frankel WL; Martin E; Arnold M; Khanduja K; Kuebler P; Clendenning M; Sotamaa K; Prior T; Westman JA; Panescu J; Fix D; Lockman J; LaJeunesse J; Comeras I; de la Chapelle A
    J Clin Oncol; 2008 Dec; 26(35):5783-8. PubMed ID: 18809606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended microsatellite analysis in microsatellite stable, MSH2 and MLH1 mutation-negative HNPCC patients: genetic reclassification and correlation with clinical features.
    Schiemann U; Müller-Koch Y; Gross M; Daum J; Lohse P; Baretton G; Muders M; Mussack T; Kopp R; Holinski-Feder E
    Digestion; 2004; 69(3):166-76. PubMed ID: 15118395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer.
    Loughrey MB; Waring PM; Tan A; Trivett M; Kovalenko S; Beshay V; Young MA; McArthur G; Boussioutas A; Dobrovic A
    Fam Cancer; 2007; 6(3):301-10. PubMed ID: 17453358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of clinical schemas and morphologic features in predicting Lynch syndrome in mutation-positive patients with endometrial cancer encountered in the context of familial gastrointestinal cancer registries.
    Ryan P; Mulligan AM; Aronson M; Ferguson SE; Bapat B; Semotiuk K; Holter S; Kwon J; Kalloger SE; Gilks CB; Gallinger S; Pollett A; Clarke BA
    Cancer; 2012 Feb; 118(3):681-8. PubMed ID: 21721000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical and molecular detection of inherited colorectal cancers in northeast Italy: a first prospective study of incidence of Lynch syndrome and MUTYH-related colorectal cancer in Italy.
    Urso E; Agostini M; Pucciarelli S; Rugge M; Bertorelle R; Maretto I; Bedin C; D'Angelo E; Mescoli C; Zorzi M; Viel A; Bruttocao G; Ferraro B; Erroi F; Contin P; De Salvo GL; Nitti D
    Tumour Biol; 2012 Jun; 33(3):857-64. PubMed ID: 22278153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yield of routine molecular analyses in colorectal cancer patients ≤70 years to detect underlying Lynch syndrome.
    van Lier MG; Leenen CH; Wagner A; Ramsoekh D; Dubbink HJ; van den Ouweland AM; Westenend PJ; de Graaf EJ; Wolters LM; Vrijland WW; Kuipers EJ; van Leerdam ME; Steyerberg EW; Dinjens WN;
    J Pathol; 2012 Apr; 226(5):764-74. PubMed ID: 22081473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target gene mutational pattern in Lynch syndrome colorectal carcinomas according to tumour location and germline mutation.
    Pinheiro M; Pinto C; Peixoto A; Veiga I; Lopes P; Henrique R; Baldaia H; Carneiro F; Seruca R; Tomlinson I; Kovac M; Heinimann K; Teixeira MR
    Br J Cancer; 2015 Aug; 113(4):686-92. PubMed ID: 26247575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of each Bethesda marker in defining microsatellite instability when screening for Lynch syndrome.
    Sinn DH; Chang DK; Kim YH; Rhee PL; Kim JJ; Kim DS; Park CK; Kim JW; Yun SH; Lee WY; Chun HK; Rhee JC
    Hepatogastroenterology; 2009; 56(91-92):672-6. PubMed ID: 19621678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.