BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22777507)

  • 1. Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities.
    Shaikh AG; Palla A; Marti S; Olasagasti I; Optican LM; Zee DS; Straumann D
    Cerebellum; 2013 Feb; 12(1):97-107. PubMed ID: 22777507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia.
    Stahl JS; Thumser ZC
    PLoS One; 2013; 8(2):e57895. PubMed ID: 23451282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebellar role in adaptation of the goldfish vestibuloocular reflex.
    Pastor AM; de la Cruz RR; Baker R
    J Neurophysiol; 1994 Sep; 72(3):1383-94. PubMed ID: 7807219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of 4-aminopyridine on vestibulo-ocular reflex performance.
    I Gusti Bagus M; Gordy C; Sanchez-Gonzalez R; Strupp M; Straka H
    J Neurol; 2019 Sep; 266(Suppl 1):93-100. PubMed ID: 31270663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia.
    Shaikh AG; Marti S; Tarnutzer AA; Palla A; Crawford TO; Zee DS; Straumann D
    J Neurol; 2013 Nov; 260(11):2728-35. PubMed ID: 23884713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1994 Mar; 71(3):1222-49. PubMed ID: 8201414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1599-613. PubMed ID: 10980030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex.
    Pastor AM; De la Cruz RR; Baker R
    Prog Brain Res; 1997; 114():359-81. PubMed ID: 9193155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability in the Vestibulo-Ocular Reflex and Vestibular Perception.
    Nouri S; Karmali F
    Neuroscience; 2018 Nov; 393():350-365. PubMed ID: 30189227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial vestibulo-ocular reflex during transient angular and linear acceleration in human cerebellar dysfunction.
    Crane BT; Tian JR; Demer JL
    Exp Brain Res; 2000 Feb; 130(4):486-96. PubMed ID: 10717790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects.
    Aw ST; Haslwanter T; Halmagyi GM; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4009-20. PubMed ID: 8985896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye movements to yaw, pitch, and roll about vertical and horizontal axes: adaptation and motion sickness.
    Bos JE; Bles W; de Graaf B
    Aviat Space Environ Med; 2002 May; 73(5):436-44. PubMed ID: 12014602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1995 May; 73(5):1729-51. PubMed ID: 7623076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Velocity storage contribution to vestibular self-motion perception in healthy human subjects.
    Bertolini G; Ramat S; Laurens J; Bockisch CJ; Marti S; Straumann D; Palla A
    J Neurophysiol; 2011 Jan; 105(1):209-23. PubMed ID: 21068266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cerebellar inactivation by lidocaine microdialysis on the vestibuloocular reflex in goldfish.
    McElligott JG; Beeton P; Polk J
    J Neurophysiol; 1998 Mar; 79(3):1286-94. PubMed ID: 9497410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. II. responses in subjects with unilateral vestibular loss and selective semicircular canal occlusion.
    Aw ST; Halmagyi GM; Haslwanter T; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4021-30. PubMed ID: 8985897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional vestibular ocular reflex testing using a six degrees of freedom motion platform.
    Dits J; Houben MM; van der Steen J
    J Vis Exp; 2013 May; (75):e4144. PubMed ID: 23728158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is vestibular self-motion perception controlled by the velocity storage? Insights from patients with chronic degeneration of the vestibulo-cerebellum.
    Bertolini G; Ramat S; Bockisch CJ; Marti S; Straumann D; Palla A
    PLoS One; 2012; 7(6):e36763. PubMed ID: 22719833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.