These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 22778049)

  • 41. Periosteal Skeletal Stem and Progenitor Cells in Bone Regeneration.
    Perrin S; Colnot C
    Curr Osteoporos Rep; 2022 Oct; 20(5):334-343. PubMed ID: 35829950
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The healing potential of the periosteum molecular aspects.
    Malizos KN; Papatheodorou LK
    Injury; 2005 Nov; 36 Suppl 3():S13-9. PubMed ID: 16188544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing.
    Wang Q; Huang C; Xue M; Zhang X
    Bone; 2011 Mar; 48(3):524-32. PubMed ID: 21056707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model.
    Ma D; Yao H; Tian W; Chen F; Liu Y; Mao T; Ren L
    Clin Oral Implants Res; 2011 Oct; 22(10):1193-1199. PubMed ID: 21303418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Origin of Reparative Stem Cells in Fracture Healing.
    Bragdon BC; Bahney CS
    Curr Osteoporos Rep; 2018 Aug; 16(4):490-503. PubMed ID: 29959723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rabbit tibial periosteum and saphenous arteriovenous vascular bundle as an in vivo bioreactor to construct vascularized tissue-engineered bone: a feasibility study.
    Han D; Guan X; Wang J; Wei J; Li Q
    Artif Organs; 2014 Feb; 38(2):167-74. PubMed ID: 23845001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microarray gene expression of periosteum in spontaneous bone regeneration of mandibular segmental defects.
    Li Z; Pan J; Ma J; Zhang Z; Bai Y
    Sci Rep; 2017 Oct; 7(1):13535. PubMed ID: 29051537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body.
    Li H; Jiang J; Wu Y; Chen S
    Int Orthop; 2012 Mar; 36(3):665-9. PubMed ID: 22009448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells.
    van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G
    Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications.
    Chen D; Shen H; Shao J; Jiang Y; Lu J; He Y; Huang C
    Int J Mol Med; 2011 May; 27(5):707-13. PubMed ID: 21369695
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovery of a periosteal stem cell mediating intramembranous bone formation.
    Debnath S; Yallowitz AR; McCormick J; Lalani S; Zhang T; Xu R; Li N; Liu Y; Yang YS; Eiseman M; Shim JH; Hameed M; Healey JH; Bostrom MP; Landau DA; Greenblatt MB
    Nature; 2018 Oct; 562(7725):133-139. PubMed ID: 30250253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wnt-associated adult stem cell marker Lgr6 is required for osteogenesis and fracture healing.
    Doherty L; Wan M; Peterson A; Youngstrom DW; King JS; Kalajzic I; Hankenson KD; Sanjay A
    Bone; 2023 Apr; 169():116681. PubMed ID: 36708855
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone induction capacity of the periosteum and neonatal dura in the setting of the rat zygomatic arch fracture model.
    Ozçelik D; Turan T; Kabukcuoğlu F; Uğurlu K; Oztürk O; Başak M; Bankaoğlu M
    Arch Facial Plast Surg; 2003; 5(4):301-8. PubMed ID: 12873867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model.
    Knothe Tate ML; Chang H; Moore SR; Knothe UR
    PLoS One; 2011; 6(12):e28702. PubMed ID: 22174873
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of adult human skeletal cells in different tissues reveals a CD90
    Cao Y; Bolam SM; Boss AL; Murray HC; Munro JT; Poulsen RC; Dalbeth N; Brooks AES; Matthews BG
    Bone; 2024 Jan; 178():116926. PubMed ID: 37793499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The combined bone forming capacity of human periosteal derived cells and calcium phosphates.
    Roberts SJ; Geris L; Kerckhofs G; Desmet E; Schrooten J; Luyten FP
    Biomaterials; 2011 Jul; 32(19):4393-405. PubMed ID: 21421268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing.
    Matsumoto T; Kuroda R; Mifune Y; Kawamoto A; Shoji T; Miwa M; Asahara T; Kurosaka M
    Bone; 2008 Sep; 43(3):434-9. PubMed ID: 18547890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model.
    Knothe Tate ML; Dolejs S; McBride SH; Matthew Miller R; Knothe UR
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):829-40. PubMed ID: 21616464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Tissue-Engineered Human Periosteum and Allograft Bone Constructs: The Potential of Periosteum in Bone Regenerative Medicine.
    Yu Q; DiFeo Jacquet R; Landis WJ
    Cells Tissues Organs; 2020; 209(2-3):128-143. PubMed ID: 32937633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.