These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 22778152)

  • 1. The propagation approach for computing biochemical reaction networks.
    Henzinger TA; Mateescu M
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):310-22. PubMed ID: 22778152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A markov model based analysis of stochastic biochemical systems.
    Ghosh P; Ghosh S; Basu K; Das SK
    Comput Syst Bioinformatics Conf; 2007; 6():121-32. PubMed ID: 17951818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic modeling of cellular networks.
    Stewart-Ornstein J; El-Samad H
    Methods Cell Biol; 2012; 110():111-37. PubMed ID: 22482947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.
    Duardo-Sánchez A; Munteanu CR; Riera-Fernández P; López-Díaz A; Pazos A; González-Díaz H
    J Chem Inf Model; 2014 Jan; 54(1):16-29. PubMed ID: 24320872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand canonical Markov model: a stochastic theory for open nonequilibrium biochemical networks.
    Heuett WJ; Qian H
    J Chem Phys; 2006 Jan; 124(4):044110. PubMed ID: 16460152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient computation of transient solutions of the chemical master equation based on uniformization and quasi-Monte Carlo.
    Hellander A
    J Chem Phys; 2008 Apr; 128(15):154109. PubMed ID: 18433192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel domain expansion methods to improve the computational efficiency of the Chemical Master Equation solution for large biological networks.
    Kosarwal R; Kulasiri D; Samarasinghe S
    BMC Bioinformatics; 2020 Nov; 21(1):515. PubMed ID: 33176690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the chemical master equation for monomolecular reaction systems analytically.
    Jahnke T; Huisinga W
    J Math Biol; 2007 Jan; 54(1):1-26. PubMed ID: 16953443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing chemical organizations in biological networks.
    Centler F; Kaleta C; di Fenizio PS; Dittrich P
    Bioinformatics; 2008 Jul; 24(14):1611-8. PubMed ID: 18480100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A graph-based approach for the approximate solution of the chemical master equation.
    Basile R; Grima R; Popović N
    Bull Math Biol; 2013 Oct; 75(10):1653-96. PubMed ID: 23797789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Rücker-Markov invariants of complex Bio-Systems: applications in Parasitology and Neuroinformatics.
    González-Díaz H; Riera-Fernández P; Pazos A; Munteanu CR
    Biosystems; 2013 Mar; 111(3):199-207. PubMed ID: 23454544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Reaction-Based Model of the State Space of Chemical Reaction Systems Enables Efficient Simulations.
    Lecca P; Re A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):469-482. PubMed ID: 30676973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation for Computing Multi-Modal Stationary Distributions in 1-D Gene Regulatory Networks.
    Avcu N; Pekergin N; Pekergin F; Guzelis C
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):813-827. PubMed ID: 28463205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient dynamics of reduced-order models of genetic regulatory networks.
    Pal R; Bhattacharya S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1230-44. PubMed ID: 22411891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model reduction of multiscale chemical langevin equations: a numerical case study.
    Sotiropoulos V; Contou-Carrere MN; Daoutidis P; Kaznessis YN
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):470-82. PubMed ID: 19644174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
    Ching WK; Zhang S; Ng MK; Akutsu T
    Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional reduction of the master equation for stochastic chemical networks: The reduced-multiplane method.
    Barzel B; Biham O; Kupferman R; Lipshtat A; Zait A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021117. PubMed ID: 20866785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantics of multimodal network models.
    Heath LS; Sioson AA
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):271-80. PubMed ID: 19407351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational approach to extinction events in chemical reaction networks with discrete state spaces.
    Johnston MD
    Math Biosci; 2017 Dec; 294():130-142. PubMed ID: 29024749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.