These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22778545)

  • 1. Design of a 32-channel EEG system for brain control interface applications.
    Wang CS
    J Biomed Biotechnol; 2012; 2012():274939. PubMed ID: 22778545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of practicality of EEG-based brain-computer interface].
    Lin H; He Q; Yan Q; Feng Z; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):702-6. PubMed ID: 20649048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.
    Black C; Voigts J; Agrawal U; Ladow M; Santoyo J; Moore C; Jones S
    J Neural Eng; 2017 Jun; 14(3):035002. PubMed ID: 28266930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors.
    Wu SL; Liao LD; Liou CH; Chen SA; Ko LW; Chen BW; Wang PS; Chen SF; Lin CT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1793-7. PubMed ID: 23366259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single trial method for brain-computer interface.
    Funase A; Yagi T; Barros AK; Cichocki A; Takumi I
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5277-81. PubMed ID: 17947135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-weight single trial EEG signal processing algorithms: computational profiling for low power design.
    Ahmadi A; Jafari R; Hart J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4426-30. PubMed ID: 22255321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Signal processing and quality of displaying waveform at digital EEG machine].
    Yoshiko K
    Rinsho Byori; 2000 Jul; 48(7):602-7. PubMed ID: 11051783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial.
    Bagheri A; Salam MT; Perez Velazquez JL; Genov R
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):161-176. PubMed ID: 27305685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of smart EEG cap.
    Lin BS; Huang YK; Lin BS
    Comput Methods Programs Biomed; 2019 Sep; 178():41-46. PubMed ID: 31416561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and validation of a wearable "DRL-less" EEG using a novel fully-reconfigurable architecture.
    Mahajan R; Morshed BI; Bidelman GM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4999-5002. PubMed ID: 28269391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wireless multichannel EEG recording platform.
    Filipe S; Charvet G; Foerster M; Porcherot J; Bêche JF; Bonnet S; Audebert P; Régis G; Zongo B; Robinet S; Condemine C; Mestais C; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6319-22. PubMed ID: 22255783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimal spatial filtering electrode for brain computer interface.
    Besio WG; Kay SM; Liu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3138-41. PubMed ID: 19963573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential.
    Li Y; Long J; Yu T; Yu Z; Wang C; Zhang H; Guan C
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2495-505. PubMed ID: 20615806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000.
    Wilson JA; Schalk G; Walton LM; Williams JC
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19641479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.