These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22778587)

  • 1. Nonlinear adaptive PID control for greenhouse environment based on RBF network.
    Zeng S; Hu H; Xu L; Li G
    Sensors (Basel); 2012; 12(5):5328-48. PubMed ID: 22778587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-objective control optimization for greenhouse environment using evolutionary algorithms.
    Hu H; Xu L; Wei R; Zhu B
    Sensors (Basel); 2011; 11(6):5792-807. PubMed ID: 22163927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Closed-Loop Control Schemes Based on the GA-PID and GA-RBF-PID Algorithms for Brain Dynamic Modulation.
    Sun C; Geng L; Liu X; Gao Q
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance-rejection-based tuning of proportional-integral-derivative controllers by exploiting closed-loop plant data.
    Jeng JC; Ge GP
    ISA Trans; 2016 May; 62():312-24. PubMed ID: 26922494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive PID control based on orthogonal endocrine neural networks.
    Milovanović MB; Antić DS; Milojković MT; Nikolić SS; Perić SL; Spasić MD
    Neural Netw; 2016 Dec; 84():80-90. PubMed ID: 27662217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable modeling based control methods using a new RBF network.
    Beyhan S; Alci M
    ISA Trans; 2010 Oct; 49(4):510-8. PubMed ID: 20471011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving disturbance rejection of PID controllers by means of the magnitude optimum method.
    Vrancić D; Strmcnik S; Kocijan J; de Moura Oliveira PB
    ISA Trans; 2010 Jan; 49(1):47-56. PubMed ID: 19733851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system.
    Feng H; Song Q; Ma S; Ma W; Yin C; Cao D; Yu H
    ISA Trans; 2022 Oct; 129(Pt A):472-484. PubMed ID: 35067353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.
    Chen TC; Yu CH
    ISA Trans; 2009 Jul; 48(3):283-94. PubMed ID: 19345940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers.
    Rodrigo MA; Seco A; Ferrer J; Penya-roja JM; Valverde JL
    ISA Trans; 1999; 38(3):231-41. PubMed ID: 10560141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.
    Savran A; Tasaltin R; Becerikli Y
    ISA Trans; 2006 Apr; 45(2):225-47. PubMed ID: 16649568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time.
    Das S; Pan I; Das S
    ISA Trans; 2013 Jul; 52(4):550-66. PubMed ID: 23664205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of a neuro-fuzzy controller by genetic algorithm.
    Seng TL; Bin Khalid M; Yusof R
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):226-36. PubMed ID: 18252294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PD plus error-dependent integral nonlinear controllers for robot manipulators with an uncertain Jacobian matrix.
    Huang CQ; Xie LF; Liu YL
    ISA Trans; 2012 Nov; 51(6):792-800. PubMed ID: 22818429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducing kernel hilbert space approach for the online update of radial bases in neuro-adaptive control.
    Kingravi HA; Chowdhary G; Vela PA; Johnson EN
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1130-41. PubMed ID: 24807138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.
    Cheng L; Zhang G; Wan B; Hao L; Qi H; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3481-4. PubMed ID: 19964991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.
    Hernández-Alvarado R; García-Valdovinos LG; Salgado-Jiménez T; Gómez-Espinosa A; Fonseca-Navarro F
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller.
    Asgharnia A; Jamali A; Shahnazi R; Maheri A
    ISA Trans; 2020 Jan; 96():272-286. PubMed ID: 31326079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillations-free PID control of anesthetic drug delivery in neuromuscular blockade.
    Medvedev A; Zhusubaliyev ZT; Rosén O; Silva MM
    Comput Methods Programs Biomed; 2019 Apr; 171():119-131. PubMed ID: 27481776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload.
    Sharma R; Gaur P; Mittal AP
    ISA Trans; 2015 Sep; 58():279-91. PubMed ID: 25896827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.