These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 22778632)

  • 21. Effects of Gait Strategy and Speed on Regularity of Locomotion Assessed in Healthy Subjects Using a Multi-Sensor Method.
    Rabuffetti M; Scalera GM; Ferrarin M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis.
    Atrsaei A; Dadashi F; Mariani B; Gonzenbach R; Aminian K
    IEEE J Biomed Health Inform; 2021 Nov; 25(11):4217-4228. PubMed ID: 33914688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors.
    Duong PD; Suh YS
    Sensors (Basel); 2015 Jul; 15(7):15888-902. PubMed ID: 26151205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientation-Invariant Spatio-Temporal Gait Analysis Using Foot-Worn Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of stride length in level walking using an inertial measurement unit attached to the foot: a validation of the zero velocity assumption during stance.
    Peruzzi A; Della Croce U; Cereatti A
    J Biomech; 2011 Jul; 44(10):1991-4. PubMed ID: 21601860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor.
    Zihajehzadeh S; Park EJ
    PLoS One; 2016; 11(10):e0165211. PubMed ID: 27764231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computation of spatio-temporal parameters in level walking using a single inertial system in lean and obese adolescents.
    Cimolin V; Capodaglio P; Cau N; Galli M; Santovito C; Patrizi A; Tringali G; Sartorio A
    Biomed Tech (Berl); 2017 Oct; 62(5):505-511. PubMed ID: 27898396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of walking speed and gait symmetry in older patients after hip arthroplasty: a prospective cohort study.
    Rapp W; Brauner T; Weber L; Grau S; Mündermann A; Horstmann T
    BMC Musculoskelet Disord; 2015 Oct; 16():291. PubMed ID: 26459628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Single Inertial-Sensor-Based Attitude Estimation during Walking Using Velocity-Aided Observation.
    Dang DC; Suh YS
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing Gait in Parkinson's Disease Using Wearable Motion Sensors: A Systematic Review.
    Brognara L; Palumbo P; Grimm B; Palmerini L
    Diseases; 2019 Feb; 7(1):. PubMed ID: 30764502
    [No Abstract]   [Full Text] [Related]  

  • 35. The Use of Wearable Sensors in Human Movement Analysis in Non-Swimming Aquatic Activities: A Systematic Review.
    Marinho DA; Neiva HP; Morais JE
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31842306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An evaluation of inertial sensor technology in the discrimination of human gait.
    Little C; Lee JB; James DA; Davison K
    J Sports Sci; 2013; 31(12):1312-8. PubMed ID: 23679899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking.
    Floor-Westerdijk MJ; Schepers HM; Veltink PH; van Asseldonk EH; Buurke JH
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2080-4. PubMed ID: 22665499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Portable accelerometers for the evaluation of spatio-temporal gait parameters in people with Parkinson's disease: an integrative review.
    de Oliveira Gondim ITG; de Souza CCB; Rodrigues MAB; Azevedo IM; de Sales Coriolano MDGW; Lins OG
    Arch Gerontol Geriatr; 2020; 90():104097. PubMed ID: 32531644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards Human Motion Tracking Enhanced by Semi-Continuous Ultrasonic Time-of-Flight Measurements.
    Jahren SE; Aakvaag N; Strisland F; Vogl A; Liberale A; Liverud AE
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33804840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Walking Distance Estimation Using Walking Canes with Inertial Sensors.
    Dang DC; Suh YS
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.