These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22779438)

  • 1. Development of energy plants and their potential to withstand various extreme environments.
    Saibi W; Brini F; Hanin M; Masmoudi K
    Recent Pat DNA Gene Seq; 2013 Apr; 7(1):13-24. PubMed ID: 22779438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.
    Kumar S
    Recent Pat DNA Gene Seq; 2013 Dec; 7(3):187-94. PubMed ID: 24456235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic improvement of biofuel plants: recent progress and patents.
    Johnson TS; Badri J; Sastry RK; Shrivastava A; Kishor PB; Sujatha M
    Recent Pat DNA Gene Seq; 2013 Apr; 7(1):2-12. PubMed ID: 22779437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.
    Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM
    Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.
    Poovaiah CR; Nageswara-Rao M; Soneji JR; Baxter HL; Stewart CN
    Plant Biotechnol J; 2014 Dec; 12(9):1163-73. PubMed ID: 25051990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
    Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F
    Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic improvement of plants for enhanced bio-ethanol production.
    Saha S; Ramachandran S
    Recent Pat DNA Gene Seq; 2013 Apr; 7(1):36-44. PubMed ID: 22779439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
    Byrt CS; Grof CP; Furbank RT
    J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.
    Harfouche A; Grant K; Selig M; Tsai D; Meilan R
    Recent Pat DNA Gene Seq; 2010 Jun; 4(2):94-105. PubMed ID: 20470242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae.
    Ndimba BK; Ndimba RJ; Johnson TS; Waditee-Sirisattha R; Baba M; Sirisattha S; Shiraiwa Y; Agrawal GK; Rakwal R
    J Proteomics; 2013 Nov; 93():234-44. PubMed ID: 23792822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels.
    Lubieniechi S; Peranantham T; Levin DB
    Recent Pat DNA Gene Seq; 2013 Apr; 7(1):25-35. PubMed ID: 22779440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiesel from lignocellulosic biomass--prospects and challenges.
    Yousuf A
    Waste Manag; 2012 Nov; 32(11):2061-7. PubMed ID: 22475852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Populus as a lignocellulosic feedstock for bioethanol.
    Porth I; El-Kassaby YA
    Biotechnol J; 2015 Apr; 10(4):510-24. PubMed ID: 25676392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnology Towards Energy Crops.
    Margaritopoulou T; Roka L; Alexopoulou E; Christou M; Rigas S; Haralampidis K; Milioni D
    Mol Biotechnol; 2016 Mar; 58(3):149-58. PubMed ID: 26798073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying plants for biofuel and biomaterial production.
    Furtado A; Lupoi JS; Hoang NV; Healey A; Singh S; Simmons BA; Henry RJ
    Plant Biotechnol J; 2014 Dec; 12(9):1246-58. PubMed ID: 25431201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.
    Moreno AD; Ibarra D; Alvira P; Tomás-Pejó E; Ballesteros M
    Crit Rev Biotechnol; 2015; 35(3):342-54. PubMed ID: 24506661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedstocks for lignocellulosic biofuels.
    Somerville C; Youngs H; Taylor C; Davis SC; Long SP
    Science; 2010 Aug; 329(5993):790-2. PubMed ID: 20705851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.