These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22779486)

  • 1. Enhancement of temporal cues to pitch in cochlear implants: effects on pitch ranking.
    Vandali AE; van Hoesel RJ
    J Acoust Soc Am; 2012 Jul; 132(1):392-402. PubMed ID: 22779486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Hear Res; 2013 Aug; 302():32-49. PubMed ID: 23685148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved music perception with explicit pitch coding in cochlear implants.
    Laneau J; Wouters J; Moonen M
    Audiol Neurootol; 2006; 11(1):38-52. PubMed ID: 16219993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Music perception of cochlear implant users compared with that of hearing aid users.
    Looi V; McDermott H; McKay C; Hickson L
    Ear Hear; 2008 Jun; 29(3):421-34. PubMed ID: 18344870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pitch ranking of complex tones by normally hearing subjects and cochlear implant users.
    Sucher CM; McDermott HJ
    Hear Res; 2007 Aug; 230(1-2):80-7. PubMed ID: 17604582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies.
    Vandali AE; Sucher C; Tsang DJ; McKay CM; Chew JW; McDermott HJ
    J Acoust Soc Am; 2005 May; 117(5):3126-38. PubMed ID: 15957780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musical pitch discrimination by cochlear implant users.
    Ping L; Yuan M; Feng H
    Ann Otol Rhinol Laryngol; 2012 May; 121(5):328-36. PubMed ID: 22724279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What breaks a melody: perceiving F0 and intensity sequences with a cochlear implant.
    Cousineau M; Demany L; Meyer B; Pressnitzer D
    Hear Res; 2010 Oct; 269(1-2):34-41. PubMed ID: 20674733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of various electrode configurations on music perception, intonation and speaker gender identification.
    Landwehr M; Fürstenberg D; Walger M; von Wedel H; Meister H
    Cochlear Implants Int; 2014 Jan; 15(1):27-35. PubMed ID: 23684531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical assessment of music perception in Korean cochlear implant listeners.
    Jung KH; Cho YS; Cho JK; Park GY; Kim EY; Hong SH; Chung WH; Won JH; Rubinstein JT
    Acta Otolaryngol; 2010 Jun; 130(6):716-23. PubMed ID: 19958251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual fusion of polyphonic pitch in cochlear implant users.
    Donnelly PJ; Guo BZ; Limb CJ
    J Acoust Soc Am; 2009 Nov; 126(5):EL128-33. PubMed ID: 19894787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of spectral timbre cues and musical instrument identification in cochlear implant recipients.
    Meister H; Landwehr M; Lang-Roth R; Streicher B; Walger M
    Cochlear Implants Int; 2014 Mar; 15(2):78-86. PubMed ID: 24597635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved fundamental frequency coding in cochlear implant signal processing.
    Milczynski M; Wouters J; van Wieringen A
    J Acoust Soc Am; 2009 Apr; 125(4):2260-71. PubMed ID: 19354401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation Rate and Voice Pitch Perception in Cochlear Implants.
    Kovačić D; James CJ
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):665-680. PubMed ID: 35918501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitch perception of concurrent harmonic tones with overlapping spectra.
    Wang J; Baer T; Glasberg BR; Stone MA; Ye D; Moore BC
    J Acoust Soc Am; 2012 Jul; 132(1):339-56. PubMed ID: 22779482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral and temporal cues in cochlear implant speech perception.
    Nie K; Barco A; Zeng FG
    Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a temporal fundamental frequency coding strategy for cochlear implants.
    Vandali AE; van Hoesel RJ
    J Acoust Soc Am; 2011 Jun; 129(6):4023-36. PubMed ID: 21682423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers.
    Palmer AR
    J Acoust Soc Am; 1990 Sep; 88(3):1412-26. PubMed ID: 2229676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.