These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22779497)

  • 41. Contingency and determinism in the evolution of bird song sound frequency.
    Friis JI; Dabelsteen T; Cardoso GC
    Sci Rep; 2021 Jun; 11(1):11600. PubMed ID: 34078943
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Timing vocal behavior: lack of temporal overlap avoidance to fluctuating noise levels in singing Eurasian wrens.
    Yang XJ; Slabbekoorn H
    Behav Processes; 2014 Oct; 108():131-7. PubMed ID: 25454773
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Template-based automatic recognition of birdsong syllables from continuous recordings.
    Anderson SE; Dave AS; Margoliash D
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1209-19. PubMed ID: 8759970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vocal characteristics of pygmy blue whales and their change over time.
    Gavrilov AN; McCauley RD; Salgado-Kent C; Tripovich J; Burton C
    J Acoust Soc Am; 2011 Dec; 130(6):3651-60. PubMed ID: 22225022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New perspectives on mechanisms of sound generation in songbirds.
    Goller F; Larsen ON
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Dec; 188(11-12):841-50. PubMed ID: 12471485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Asymmetric Response of Costa Rican White-Breasted Wood-Wrens (Henicorhina leucosticta) to Vocalizations from Allopatric Populations.
    Pegan TM; Rumelt RB; Dzielski SA; Ferraro MM; Flesher LE; Young N; Class Freeman A; Freeman BG
    PLoS One; 2015; 10(12):e0144949. PubMed ID: 26671001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deciphering information encoded in birdsong: male songbirds with fertile mates respond most strongly to complex, low-amplitude songs used in courtship.
    Reichard DG; Rice RJ; Vanderbilt CC; Ketterson ED
    Am Nat; 2011 Oct; 178(4):478-87. PubMed ID: 21956026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-frequency songs lose their potency in noisy urban conditions.
    Halfwerk W; Bot S; Buikx J; van der Velde M; Komdeur J; ten Cate C; Slabbekoorn H
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14549-54. PubMed ID: 21876157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials].
    Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z
    Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sounds of Indo-Pacific humpback dolphins (Sousa chinensis) in West Hong Kong: a preliminary description.
    Sims PQ; Vaughn R; Hung SK; Würsig B
    J Acoust Soc Am; 2012 Jan; 131(1):EL48-53. PubMed ID: 22280729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic recognition of harmonic bird sounds using a frequency track extraction algorithm.
    Heller JR; Pinezich JD
    J Acoust Soc Am; 2008 Sep; 124(3):1830-7. PubMed ID: 19045673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the evolution of noise-dependent vocal plasticity in birds.
    Schuster S; Zollinger SA; Lesku JA; Brumm H
    Biol Lett; 2012 Dec; 8(6):913-6. PubMed ID: 22977069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Geographically pervasive effects of urban noise on frequency and syllable rate of songs and calls in silvereyes (Zosterops lateralis).
    Potvin DA; Parris KM; Mulder RA
    Proc Biol Sci; 2011 Aug; 278(1717):2464-9. PubMed ID: 21208948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automated extraction and classification of time-frequency contours in humpback vocalizations.
    Ou H; Au WW; Zurk LM; Lammers MO
    J Acoust Soc Am; 2013 Jan; 133(1):301-10. PubMed ID: 23297903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Individual identification of birds with complex songs: The case of green-backed flycatchers Ficedula elisae.
    Chen G; Xia C; Zhang Y
    Behav Processes; 2020 Apr; 173():104063. PubMed ID: 32006620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Eastern Bluebirds Alter their Song in Response to Anthropogenic Changes in the Acoustic Environment.
    Kight CR; Swaddle JP
    Integr Comp Biol; 2015 Sep; 55(3):418-31. PubMed ID: 26116201
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Allometry of Sound Frequency Bandwidth in Songbirds.
    Friis JI; Sabino J; Santos P; Dabelsteen T; Cardoso GC
    Am Nat; 2021 May; 197(5):607-614. PubMed ID: 33908826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Birds and anthropogenic noise: singing higher may matter.
    Slabbekoorn H; Yang XJ; Halfwerk W
    Am Nat; 2012 Jul; 180(1):142-5; author reply 146-52. PubMed ID: 22673657
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of song production in the Australian magpie.
    Suthers RA; Wild JM; Kaplan G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):45-59. PubMed ID: 20852867
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reconstructing the evolution of complex bird song in the oropendolas.
    Price JJ; Lanyon SM
    Evolution; 2002 Jul; 56(7):1514-29. PubMed ID: 12206250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.