These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 22779582)
1. A probability generating function method for stochastic reaction networks. Kim P; Lee CH J Chem Phys; 2012 Jun; 136(23):234108. PubMed ID: 22779582 [TBL] [Abstract][Full Text] [Related]
2. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. Salis H; Kaznessis Y J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306 [TBL] [Abstract][Full Text] [Related]
3. A moment closure method for stochastic reaction networks. Lee CH; Kim KH; Kim P J Chem Phys; 2009 Apr; 130(13):134107. PubMed ID: 19355717 [TBL] [Abstract][Full Text] [Related]
4. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation. Alarcón T J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255 [TBL] [Abstract][Full Text] [Related]
5. Zero-order ultrasensitivity: a study of criticality and fluctuations under the total quasi-steady state approximation in the linear noise regime. Jithinraj PK; Roy U; Gopalakrishnan M J Theor Biol; 2014 Mar; 344():1-11. PubMed ID: 24309434 [TBL] [Abstract][Full Text] [Related]
6. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. Salis H; Kaznessis YN J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038 [TBL] [Abstract][Full Text] [Related]
7. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation. Mélykúti B; Burrage K; Zygalakis KC J Chem Phys; 2010 Apr; 132(16):164109. PubMed ID: 20441260 [TBL] [Abstract][Full Text] [Related]
8. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. Macnamara S; Bersani AM; Burrage K; Sidje RB J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893 [TBL] [Abstract][Full Text] [Related]
9. Distributions for negative-feedback-regulated stochastic gene expression: dimension reduction and numerical solution of the chemical master equation. Zeron ES; Santillán M J Theor Biol; 2010 May; 264(2):377-85. PubMed ID: 20144620 [TBL] [Abstract][Full Text] [Related]
10. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. Ramaswamy R; González-Segredo N; Sbalzarini IF J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139 [TBL] [Abstract][Full Text] [Related]
11. Grand canonical Markov model: a stochastic theory for open nonequilibrium biochemical networks. Heuett WJ; Qian H J Chem Phys; 2006 Jan; 124(4):044110. PubMed ID: 16460152 [TBL] [Abstract][Full Text] [Related]
12. Two classes of quasi-steady-state model reductions for stochastic kinetics. Mastny EA; Haseltine EL; Rawlings JB J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731 [TBL] [Abstract][Full Text] [Related]
13. Reducing a chemical master equation by invariant manifold methods. Roussel MR; Zhu R J Chem Phys; 2004 Nov; 121(18):8716-30. PubMed ID: 15527335 [TBL] [Abstract][Full Text] [Related]
14. The finite state projection algorithm for the solution of the chemical master equation. Munsky B; Khammash M J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146 [TBL] [Abstract][Full Text] [Related]
15. A study of the accuracy of moment-closure approximations for stochastic chemical kinetics. Grima R J Chem Phys; 2012 Apr; 136(15):154105. PubMed ID: 22519313 [TBL] [Abstract][Full Text] [Related]
16. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Ching WK; Zhang S; Ng MK; Akutsu T Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027 [TBL] [Abstract][Full Text] [Related]
17. A moment-convergence method for stochastic analysis of biochemical reaction networks. Zhang J; Nie Q; Zhou T J Chem Phys; 2016 May; 144(19):194109. PubMed ID: 27208938 [TBL] [Abstract][Full Text] [Related]
18. On the origins of approximations for stochastic chemical kinetics. Haseltine EL; Rawlings JB J Chem Phys; 2005 Oct; 123(16):164115. PubMed ID: 16268689 [TBL] [Abstract][Full Text] [Related]
19. Sequential estimation for prescribed statistical accuracy in stochastic simulation of biological systems. Sandmann W Math Biosci; 2009 Sep; 221(1):43-53. PubMed ID: 19576907 [TBL] [Abstract][Full Text] [Related]
20. Unbiased tau-leap methods for stochastic simulation of chemically reacting systems. Xu Z; Cai X J Chem Phys; 2008 Apr; 128(15):154112. PubMed ID: 18433195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]