These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22779605)

  • 1. Controlling activated processes of nonadiabatically, periodically driven dynamical systems: a multiple scale perturbation approach.
    Shit A; Chattopadhyay S; Ray Chaudhuri J
    J Chem Phys; 2012 Jun; 136(23):234506. PubMed ID: 22779605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum stochastic dynamics in the presence of a time-periodic rapidly oscillating potential: nonadiabatic escape rate.
    Shit A; Chattopadhyay S; Chaudhuri JR
    J Phys Chem A; 2013 Sep; 117(36):8576-90. PubMed ID: 23627350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-independent description of rapidly driven systems in the presence of friction: multiple scale perturbation approach.
    Shit A; Chattopadhyay S; Chaudhuri JR
    Chaos; 2012 Mar; 22(1):013131. PubMed ID: 22463007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalization of the escape rate from a metastable state driven by external cross-correlated noise processes.
    Chaudhuri JR; Chattopadhyay S; Banik SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021125. PubMed ID: 17930024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape rate for a quantum particle moving in a time-periodic rapidly oscillating potential: a time-independent approach.
    Shit A; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051102. PubMed ID: 23004698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated escape of periodically driven systems.
    Dykman MI; Golding B; McCann LI; Smelyanskiy VN; Luchinsky DG; Mannella R; McClintock PV
    Chaos; 2001 Sep; 11(3):587-594. PubMed ID: 12779496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplicative cross-correlated noise induced escape rate from a metastable state.
    Chaudhuri JR; Chattopadhyay S; Banik SK
    J Chem Phys; 2008 Apr; 128(15):154513. PubMed ID: 18433241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical mechanical theory for steady state systems. VIII. General theory for a Brownian particle driven by a time- and space-varying force.
    Attard P; Gray-Weale A
    J Chem Phys; 2008 Mar; 128(11):114509. PubMed ID: 18361593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Master equation approach to time-dependent escape rate over a periodically oscillating barrier.
    Wang XX; Bao JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011127. PubMed ID: 21405681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-independent approximations for periodically driven systems with friction.
    Rahav S; Geva E; Fishman S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036210. PubMed ID: 15903549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry broken motion of a periodically driven Brownian particle: nonadiabatic regime.
    Fistul MV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046621. PubMed ID: 12006061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian escape and force-driven transport through entropic barriers: Particle size effect.
    Cheng KL; Sheng YJ; Tsao HK
    J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kramers escape rate in nonlinear diffusive media.
    JiangLin Z; Bao JD; Wenping G
    J Chem Phys; 2006 Jan; 124(2):024112. PubMed ID: 16422576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of vibrational resonance in a quintic oscillator.
    Jeyakumari S; Chinnathambi V; Rajasekar S; Sanjuan MA
    Chaos; 2009 Dec; 19(4):043128. PubMed ID: 20059224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling and crossovers in activated escape near a bifurcation point.
    Ryvkine D; Dykman MI; Golding B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061102. PubMed ID: 15244535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the motion of interacting particles: homogeneous systems and binary mixtures.
    Savel'ev S; Nori F
    Chaos; 2005 Jun; 15(2):26112. PubMed ID: 16035914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymptotic distributions of periodically driven stochastic systems.
    Dutta SB; Barma M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061111. PubMed ID: 16241203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response maxima in modulated turbulence. II. Numerical simulations.
    von der Heydt A; Grossmann S; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066302. PubMed ID: 14754310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.