These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22779612)

  • 1. Substrate effect on the melting temperature of gold nanoparticles.
    Luo W; Su K; Li K; Liao G; Hu N; Jia M
    J Chem Phys; 2012 Jun; 136(23):234704. PubMed ID: 22779612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transition in substrate-supported molybdenum nanoparticles: a molecular dynamics study.
    Shibuta Y; Suzuki T
    Phys Chem Chem Phys; 2010 Jan; 12(3):731-9. PubMed ID: 20066359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum nanoparticles on carbonaceous materials: the effect of support geometry on nanoparticle mobility, morphology, and melting.
    Morrow BH; Striolo A
    Nanotechnology; 2008 May; 19(19):195711. PubMed ID: 21825729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 Mar; 109(8):3104-11. PubMed ID: 16851329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level.
    Zhou X; Xu W; Liu G; Panda D; Chen P
    J Am Chem Soc; 2010 Jan; 132(1):138-46. PubMed ID: 19968305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage melting of Au-Pd nanoparticles.
    Mejía-Rosales SJ; Fernandez-Navarro C; Pérez-Tijerina E; Montejano-Carrizales JM; José-Yacamán M
    J Phys Chem B; 2006 Jul; 110(26):12884-9. PubMed ID: 16805586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity.
    Li Z; Ciobanu CV; Hu J; Palomares-Báez JP; Rodríguez-López JL; Richards R
    Phys Chem Chem Phys; 2011 Feb; 13(7):2582-9. PubMed ID: 21243143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters.
    Kuo CL; Clancy P
    J Phys Chem B; 2005 Jul; 109(28):13743-54. PubMed ID: 16852722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal relation for size dependent thermodynamic properties of metallic nanoparticles.
    Xiong S; Qi W; Cheng Y; Huang B; Wang M; Li Y
    Phys Chem Chem Phys; 2011 Jun; 13(22):10652-60. PubMed ID: 21523307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study.
    Zhang J; Leroy F; Müller-Plathe F
    Langmuir; 2013 Aug; 29(31):9770-82. PubMed ID: 23848165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of ZnO nanowires catalyzed by size-dependent melting of Au nanoparticles.
    Petersen EW; Likovich EM; Russell KJ; Narayanamurti V
    Nanotechnology; 2009 Oct; 20(40):405603. PubMed ID: 19738315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ atomic-scale observation of melting point suppression in nanometer-sized gold particles.
    Lee J; Lee J; Tanaka T; Mori H
    Nanotechnology; 2009 Nov; 20(47):475706. PubMed ID: 19875878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of hybrid oligonucleotide modified gold (Au) and alloy nanoparticles building blocks.
    Kuo YC; Jen CP; Chen YH; Su CH; Tsai SH; Yeh CS
    J Nanosci Nanotechnol; 2006 Jan; 6(1):95-100. PubMed ID: 16573077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular dynamics study of the phase transition in bcc metal nanoparticles.
    Shibuta Y; Suzuki T
    J Chem Phys; 2008 Oct; 129(14):144102. PubMed ID: 19045129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-chemical stability of gold nanoparticles coated with alkanethiolate SAMs.
    Henz BJ; Hawa T; Zachariah MR
    Langmuir; 2008 Feb; 24(3):773-83. PubMed ID: 18189429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular-dynamics study of structural and physical properties of nitromethane nanoparticles.
    Alavi S; Thompson DL
    J Chem Phys; 2004 Jun; 120(21):10231-9. PubMed ID: 15268047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.