These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22779612)

  • 21. Size-dependent melting and coalescence of tungsten nanoclusters via molecular dynamics simulation.
    Liu CM; Xu C; Cheng Y; Chen XR; Cai LC
    Phys Chem Chem Phys; 2013 Sep; 15(33):14069-79. PubMed ID: 23852181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Au-C interactions on the catalytic activity of au nanoparticles supported on TiC(001) toward molecular oxygen dissociation.
    Rodríguez JA; Feria L; Jirsak T; Takahashi Y; Nakamura K; Illas F
    J Am Chem Soc; 2010 Mar; 132(9):3177-86. PubMed ID: 20143811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size- and dimensionality-dependent thermodynamic properties of ice nanocrystals.
    Han YY; Shuai J; Lu HM; Meng XK
    J Phys Chem B; 2012 Feb; 116(5):1651-4. PubMed ID: 22251366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications.
    Kameyama T; Ohno Y; Kurimoto T; Okazaki K; Uematsu T; Kuwabata S; Torimoto T
    Phys Chem Chem Phys; 2010 Feb; 12(8):1804-11. PubMed ID: 20145845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equilibrium morphology of face-centered cubic gold nanoparticles >3 nm and the shape changes induced by temperature.
    Barnard AS; Lin XM; Curtiss LA
    J Phys Chem B; 2005 Dec; 109(51):24465-72. PubMed ID: 16375449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of substrate morphology on the growth of gold nanoparticles.
    Grochola G; Snook IK; Russo SP
    J Chem Phys; 2008 Oct; 129(15):154708. PubMed ID: 19045219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melting entropy of nanocrystals: an approach from statistical physics.
    Safaei A; Attarian Shandiz M
    Phys Chem Chem Phys; 2010 Dec; 12(47):15372-81. PubMed ID: 21031184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-dependent melting behavior of iron nanoparticles by replica exchange molecular dynamics.
    Shu Q; Yang Y; Zhai YT; Sun DY; Xiang HJ; Gong XG
    Nanoscale; 2012 Oct; 4(20):6307-11. PubMed ID: 22930365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A molecular dynamics study on the thermal properties of carbon-based gold nanoparticles.
    Gowdini E; Ahmad AA; Mabudi A; Hadipour NL; Kharazian B
    J Mol Model; 2020 Oct; 26(11):307. PubMed ID: 33083893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV.
    Sane A; Thies MC
    J Phys Chem B; 2005 Oct; 109(42):19688-95. PubMed ID: 16853546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts.
    Patton ST; Slocik JM; Campbell A; Hu J; Naik RR; Voevodin AA
    Nanotechnology; 2008 Oct; 19(40):405705. PubMed ID: 21832634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular simulation of interaction between passivated gold nanoparticles in supercritical CO2.
    Sun L; Yang X; Wu B; Tang L
    J Chem Phys; 2011 Nov; 135(20):204703. PubMed ID: 22128948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanosolids, slushes, and nanoliquids: characterization of nanophases in metal clusters and nanoparticles.
    Li ZH; Truhlar DG
    J Am Chem Soc; 2008 Sep; 130(38):12698-711. PubMed ID: 18729357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.
    Yang S; Pelton R
    Langmuir; 2011 Sep; 27(18):11409-15. PubMed ID: 21830818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level.
    Xu W; Kong JS; Chen P
    Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association temperature governs structure and apparent thermodynamics of DNA-gold nanoparticles.
    Beermann B; Carrillo-Nava E; Scheffer A; Buscher W; Jawalekar AM; Seela F; Hinz HJ
    Biophys Chem; 2007 Mar; 126(1-3):124-31. PubMed ID: 16757092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm).
    Karunakaran RG; Lu CH; Zhang Z; Yang S
    Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.