BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 22779679)

  • 21. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation.
    Tamura H; Burghardt I
    J Am Chem Soc; 2013 Nov; 135(44):16364-7. PubMed ID: 24138412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.
    Yi Y; Coropceanu V; Brédas JL
    J Am Chem Soc; 2009 Nov; 131(43):15777-83. PubMed ID: 19810727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells.
    Lee J; Vandewal K; Yost SR; Bahlke ME; Goris L; Baldo MA; Manca JV; Van Voorhis T
    J Am Chem Soc; 2010 Sep; 132(34):11878-80. PubMed ID: 20690623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.
    Heitzer HM; Savoie BM; Marks TJ; Ratner MA
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7456-60. PubMed ID: 24829165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics.
    Meng L; Shang Y; Li Q; Li Y; Zhan X; Shuai Z; Kimber RG; Walker AB
    J Phys Chem B; 2010 Jan; 114(1):36-41. PubMed ID: 20000370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends.
    Guo Z; Lee D; Schaller RD; Zuo X; Lee B; Luo T; Gao H; Huang L
    J Am Chem Soc; 2014 Jul; 136(28):10024-32. PubMed ID: 24956140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Multidimensional View of Charge Transfer Excitons at Organic Donor-Acceptor Interfaces.
    Wang T; Kafle TR; Kattel B; Chan WL
    J Am Chem Soc; 2017 Mar; 139(11):4098-4106. PubMed ID: 28248094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of donor-acceptor phase separation on the charge carrier dynamics in pBTTT:PCBM photovoltaic blends.
    Gehrig DW; Howard IA; Sweetnam S; Burke TM; McGehee MD; Laquai F
    Macromol Rapid Commun; 2015 Jun; 36(11):1054-60. PubMed ID: 25857289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
    Wu G; Li Z; Zhang X; Lu G
    J Phys Chem Lett; 2014 Aug; 5(15):2649-56. PubMed ID: 26277958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells.
    Izquierdo MA; Broer R; Havenith RWA
    J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge separation pathways in a highly efficient polymer: fullerene solar cell material.
    Paraecattil AA; Banerji N
    J Am Chem Soc; 2014 Jan; 136(4):1472-82. PubMed ID: 24437495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadband ultrafast photoluminescence spectroscopy resolves charge photogeneration via delocalized hot excitons in polymer:fullerene photovoltaic blends.
    Chen K; Barker AJ; Reish ME; Gordon KC; Hodgkiss JM
    J Am Chem Soc; 2013 Dec; 135(49):18502-12. PubMed ID: 24206394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailored Interface Energetics for Efficient Charge Separation in Metal Oxide-Polymer Solar Cells.
    Ehrenreich P; Groh A; Goodwin H; Huster J; Deschler F; Mecking S; Schmidt-Mende L
    Sci Rep; 2019 Jan; 9(1):74. PubMed ID: 30635589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new multiscale modeling method for simulating the loss processes in polymer solar cell nanodevices.
    Pershin A; Donets S; Baeurle SA
    J Chem Phys; 2012 May; 136(19):194102. PubMed ID: 22612075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of exciton dissociation through hot states at donor-acceptor interface in organic photocell.
    Shimazaki T; Nakajima T
    Phys Chem Chem Phys; 2015 May; 17(19):12538-44. PubMed ID: 25898910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of morphology on ultrafast free carrier generation in polythiophene:fullerene organic solar cells.
    Howard IA; Mauer R; Meister M; Laquai F
    J Am Chem Soc; 2010 Oct; 132(42):14866-76. PubMed ID: 20923187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge recombination in organic photovoltaic devices with high open-circuit voltages.
    Westenhoff S; Howard IA; Hodgkiss JM; Kirov KR; Bronstein HA; Williams CK; Greenham NC; Friend RH
    J Am Chem Soc; 2008 Oct; 130(41):13653-8. PubMed ID: 18798623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-mediated exciton coupling and electron transfer between donor and acceptor stilbenes separated by a variable number of base pairs.
    Lewis FD; Wu Y; Zhang L; Zuo X; Hayes RT; Wasielewski MR
    J Am Chem Soc; 2004 Jul; 126(26):8206-15. PubMed ID: 15225062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the nanoscale phase separation in binary photovoltaic blends of poly(3-hexylthiophene) and methanofullerene by energy transfer.
    Ruseckas A; Shaw PE; Samuel ID
    Dalton Trans; 2009 Dec; (45):10040-3. PubMed ID: 19904431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.