BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22779785)

  • 1. Methylmercury cycling in High Arctic wetland ponds: sources and sinks.
    Lehnherr I; St Louis VL; Emmerton CA; Barker JD; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10514-22. PubMed ID: 22779785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmercury cycling in High Arctic wetland ponds: controls on sedimentary production.
    Lehnherr I; St Louis VL; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10523-31. PubMed ID: 22799567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.
    MacMillan GA; Girard C; Chételat J; Laurion I; Amyot M
    Environ Sci Technol; 2015 Jul; 49(13):7743-53. PubMed ID: 26030209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America.
    Bates LM; Hall BD
    Environ Pollut; 2012 Jan; 160(1):153-60. PubMed ID: 22035939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snowmelt sources of methylmercury to high arctic ecosystems.
    Loseto LL; Lean DR; Siciliano SD
    Environ Sci Technol; 2004 Jun; 38(11):3004-10. PubMed ID: 15224728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.
    Girard C; Leclerc M; Amyot M
    Environ Sci Technol; 2016 Apr; 50(7):3511-20. PubMed ID: 26938195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury Transport and Fate Shows Strong Seasonal and Spatial Variability along a High Arctic Freshwater Hydrologic Continuum.
    Varty S; Lehnherr I; St Pierre K; Kirk J; Wisniewski V
    Environ Sci Technol; 2021 Jan; 55(1):331-340. PubMed ID: 33356178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury methylation in stormwater retention ponds at different stages in the management lifecycle.
    Strickman RJ; Mitchell CPJ
    Environ Sci Process Impacts; 2018 Apr; 20(4):595-606. PubMed ID: 29376168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada.
    Sinclair KA; Xie Q; Mitchell CP
    Environ Pollut; 2012 Dec; 171():207-15. PubMed ID: 22940274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources of methylmercury to a wetland-dominated lake in northern Wisconsin.
    Watras CJ; Morrison KA; Kent A; Price N; Regnell O; Eckley C; Hintelmann H; Hubacher T
    Environ Sci Technol; 2005 Jul; 39(13):4747-58. PubMed ID: 16053072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.
    Hoggarth CG; Hall BD; Mitchell CP
    Environ Pollut; 2015 Oct; 205():269-77. PubMed ID: 26099458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.
    Lescord GL; Kidd KA; Kirk JL; O'Driscoll NJ; Wang X; Muir DC
    Sci Total Environ; 2015 Mar; 509-510():195-205. PubMed ID: 24909711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drivers of Mercury Cycling in the Rapidly Changing Glacierized Watershed of the High Arctic's Largest Lake by Volume (Lake Hazen, Nunavut, Canada).
    St Pierre KA; St Louis VL; Lehnherr I; Gardner AS; Serbu JA; Mortimer CA; Muir DCG; Wiklund JA; Lemire D; Szostek L; Talbot C
    Environ Sci Technol; 2019 Feb; 53(3):1175-1185. PubMed ID: 30596413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.
    Strickman RJ; Mitchell CPJ
    Environ Pollut; 2017 Feb; 221():326-334. PubMed ID: 27939209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.
    Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl mercury production and loss in Arctic soil.
    Oiffer L; Siciliano SD
    Sci Total Environ; 2009 Feb; 407(5):1691-700. PubMed ID: 19081608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylmercury production in High Arctic wetlands.
    Loseto LL; Siciliano SD; Lean DR
    Environ Toxicol Chem; 2004 Jan; 23(1):17-23. PubMed ID: 14768862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that influence methylmercury flux rates from wetland sediments.
    Holmes J; Lean D
    Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.