These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22780231)

  • 1. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.
    Schmidt J; Piekarski N; Olsson L
    J Anat; 2013 Jan; 222(1):134-46. PubMed ID: 22780231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian, Bombina orientalis.
    Olsson L; Falck P; Lopez K; Cobb J; Hanken J
    Dev Biol; 2001 Sep; 237(2):354-67. PubMed ID: 11543620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.
    Ericsson R; Cerny R; Falck P; Olsson L
    Dev Dyn; 2004 Oct; 231(2):237-47. PubMed ID: 15366001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertebrate head development: segmentation, novelties, and homology.
    Olsson L; Ericsson R; Cerny R
    Theory Biosci; 2005 Nov; 124(2):145-63. PubMed ID: 17046353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of cranial development and the role of neural crest: insights from amphibians.
    Hanken J; Gross JB
    J Anat; 2005 Nov; 207(5):437-46. PubMed ID: 16313386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between neural crest cells and cranial mesoderm during head muscle development.
    Grenier J; Teillet MA; Grifone R; Kelly RG; Duprez D
    PLoS One; 2009; 4(2):e4381. PubMed ID: 19198652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages.
    Schmidt J; Schuff M; Olsson L
    J Anat; 2011 Feb; 218(2):226-42. PubMed ID: 21050205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae.
    Taniguchi Y; Kurth T; Medeiros DM; Tazaki A; Ramm R; Epperlein HH
    Sci Rep; 2015 Jun; 5():11428. PubMed ID: 26086331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis.
    Kulesa P; Ellies DL; Trainor PA
    Dev Dyn; 2004 Jan; 229(1):14-29. PubMed ID: 14699574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ancestral role for Semaphorin3F-Neuropilin signaling in patterning neural crest within the new vertebrate head.
    York JR; Yuan T; Lakiza O; McCauley DW
    Development; 2018 Jul; 145(14):. PubMed ID: 29980564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures.
    Lours-Calet C; Alvares LE; El-Hanfy AS; Gandesha S; Walters EH; Sobreira DR; Wotton KR; Jorge EC; Lawson JA; Kelsey Lewis A; Tada M; Sharpe C; Kardon G; Dietrich S
    Dev Biol; 2014 Jun; 390(2):231-46. PubMed ID: 24662046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head.
    Kuratani S
    Anat Embryol (Berl); 1997 Jan; 195(1):1-13. PubMed ID: 9006711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo.
    Fonseca BF; Couly G; Dupin E
    BMC Dev Biol; 2017 Oct; 17(1):13. PubMed ID: 29017464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new heart for a new head in vertebrate cardiopharyngeal evolution.
    Diogo R; Kelly RG; Christiaen L; Levine M; Ziermann JM; Molnar JL; Noden DM; Tzahor E
    Nature; 2015 Apr; 520(7548):466-73. PubMed ID: 25903628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early differentiation and migration of cranial neural crest in the opossum, Monodelphis domestica.
    Vaglia JL; Smith KK
    Evol Dev; 2003; 5(2):121-35. PubMed ID: 12622729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural crest and the patterning of vertebrate craniofacial muscles.
    Ziermann JM; Diogo R; Noden DM
    Genesis; 2018 Jun; 56(6-7):e23097. PubMed ID: 29659153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots.
    Tokita M; Nakayama T; Schneider RA; Agata K
    Proc Biol Sci; 2013 Feb; 280(1752):20122319. PubMed ID: 23235703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early cranial neural crest migration in the direct-developing frog, Eleutherodactylus coqui.
    Moury JD; Hanken J
    Acta Anat (Basel); 1995; 153(4):243-53. PubMed ID: 8659248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl.
    Cerny R; Meulemans D; Berger J; Wilsch-Bräuninger M; Kurth T; Bronner-Fraser M; Epperlein HH
    Dev Biol; 2004 Feb; 266(2):252-69. PubMed ID: 14738875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development.
    Minoux M; Rijli FM
    Development; 2010 Aug; 137(16):2605-21. PubMed ID: 20663816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.