BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 22780435)

  • 1. Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice.
    Charbonneau V; Laramée ME; Boucher V; Bronchti G; Boire D
    Eur J Neurosci; 2012 Oct; 36(7):2949-63. PubMed ID: 22780435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice.
    Laramée ME; Smolders K; Hu TT; Bronchti G; Boire D; Arckens L
    PLoS One; 2016; 11(7):e0159320. PubMed ID: 27410964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Projections from the visual areas to the neostriatum in rats. A re-examination.
    López-Figueroa MO; Ramirez-Gonzalez JA; Divac I
    Acta Neurobiol Exp (Wars); 1995; 55(3):165-75. PubMed ID: 8553910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices.
    Petrof I; Viaene AN; Sherman SM
    J Comp Neurol; 2012 Jun; 520(8):1678-86. PubMed ID: 22120996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual Deprivation Causes Refinement of Intracortical Circuits in the Auditory Cortex.
    Meng X; Kao JP; Lee HK; Kanold PO
    Cell Rep; 2015 Aug; 12(6):955-64. PubMed ID: 26235625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals.
    Kahn DM; Krubitzer L
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11429-34. PubMed ID: 12163645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior-related visual activations in the auditory cortex of nonhuman primates.
    Huang Y; Brosch M
    Prog Neurobiol; 2024 Jun; 240():102637. PubMed ID: 38879074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical activity emerges in region-specific patterns during early brain development.
    Suárez R; Bluett T; McCullough MH; Avitan L; Black DA; Paolino A; Fenlon LR; Goodhill GJ; Richards LJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 36824827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of bimodal fMRI responses in mouse somatosensory areas into V1 and non-V1 contributions.
    Dinh TNA; Moon HS; Kim SG
    Sci Rep; 2024 Mar; 14(1):6302. PubMed ID: 38491035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorganization of thalamocortical connections in congenitally blind humans.
    Marins TF; Russo M; Rodrigues EC; Monteiro M; Moll J; Felix D; Bouzas J; Arcanjo H; Vargas CD; Tovar-Moll F
    Hum Brain Mapp; 2023 Apr; 44(5):2039-2049. PubMed ID: 36661404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive timing of undifferentiation in oligodendrocyte progenitor cells and their enhanced maturation in primary visual cortex of binocularly enucleated mice.
    Shin H; Kawai HD
    PLoS One; 2021; 16(9):e0257395. PubMed ID: 34534256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual deprivation induces transient upregulation of oligodendrocyte progenitor cells in the subcortical white matter of mouse visual cortex.
    Shin H; Kawai HD
    IBRO Neurosci Rep; 2021 Dec; 11():29-41. PubMed ID: 34286312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision.
    Ewall G; Parkins S; Lin A; Jaoui Y; Lee HK
    Front Neural Circuits; 2021; 15():665009. PubMed ID: 34113240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder.
    Siemann JK; Veenstra-VanderWeele J; Wallace MT
    Autism Res; 2020 Sep; 13(9):1430-1449. PubMed ID: 32869933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Sensory Loss Alters the Dendritic Branching and Spine Density of Supragranular Pyramidal Neurons in Rodent Primary Sensory Cortices.
    Macharadze T; Budinger E; Brosch M; Scheich H; Ohl FW; Henschke JU
    Front Neural Circuits; 2019; 13():61. PubMed ID: 31611778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not all cortical expansions are the same: the coevolution of the neocortex and the dorsal thalamus in mammals.
    Halley AC; Krubitzer L
    Curr Opin Neurobiol; 2019 Jun; 56():78-86. PubMed ID: 30658218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in cortical and thalamic connections of somatosensory cortex following early loss of vision.
    Dooley JC; Krubitzer LA
    J Comp Neurol; 2019 Jul; 527(10):1675-1688. PubMed ID: 30444542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey.
    Majka P; Rosa MGP; Bai S; Chan JM; Huo BX; Jermakow N; Lin MK; Takahashi YS; Wolkowicz IH; Worthy KH; Rajan R; Reser DH; Wójcik DK; Okano H; Mitra PP
    Brain Struct Funct; 2019 Jan; 224(1):111-131. PubMed ID: 30288557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices.
    Henschke JU; Oelschlegel AM; Angenstein F; Ohl FW; Goldschmidt J; Kanold PO; Budinger E
    Brain Struct Funct; 2018 Apr; 223(3):1165-1190. PubMed ID: 29094306
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.