BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 2278053)

  • 1. Future prospects for the chemotherapy of human trypanosomiasis. 1. Novel approaches to the chemotherapy of trypanosomiasis.
    Fairlamb AH
    Trans R Soc Trop Med Hyg; 1990; 84(5):613-7. PubMed ID: 2278053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism.
    Saccoliti F; Di Santo R; Costi R
    ChemMedChem; 2020 Dec; 15(24):2420-2435. PubMed ID: 32805075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular studies on trypanothione reductase, a target for antiparasitic drugs.
    Walsh C; Bradley M; Nadeau K
    Trends Biochem Sci; 1991 Aug; 16(8):305-9. PubMed ID: 1957352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanothione metabolism and rational approaches to drug design.
    Fairlamb AH
    Biochem Soc Trans; 1990 Oct; 18(5):717-20. PubMed ID: 2083656
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular studies on trypanothione reductase: an antiparasitic target enzyme.
    Walsh C; Bradley M; Nadeau K
    Curr Top Cell Regul; 1992; 33():409-17. PubMed ID: 1354149
    [No Abstract]   [Full Text] [Related]  

  • 7. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The therapeutic potential of inhibitors of the trypanothione cycle.
    D'Silva C; Daunes S
    Expert Opin Investig Drugs; 2002 Feb; 11(2):217-31. PubMed ID: 11829713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents.
    Augustyns K; Amssoms K; Yamani A; Rajan PK; Haemers A
    Curr Pharm Des; 2001 Aug; 7(12):1117-41. PubMed ID: 11472257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases.
    Flohé L
    Biotechnol Adv; 2012; 30(1):294-301. PubMed ID: 21620942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational drug design using trypanothione reductase as a target for anti-trypanosomal and anti-leishmanial drug leads.
    Austin SE; Khan MO; Douglas KT
    Drug Des Discov; 1999 Jul; 16(1):5-23. PubMed ID: 10466053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Achilles' heel of trypanosomatids: trypanothione-mediated hydroperoxide metabolism.
    Flohé L
    Biofactors; 1998; 8(1-2):87-91. PubMed ID: 9699014
    [No Abstract]   [Full Text] [Related]  

  • 15. Active site of trypanothione reductase. A target for rational drug design.
    Hunter WN; Bailey S; Habash J; Harrop SJ; Helliwell JR; Aboagye-Kwarteng T; Smith K; Fairlamb AH
    J Mol Biol; 1992 Sep; 227(1):322-33. PubMed ID: 1522596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis.
    Heby O; Persson L; Rentala M
    Amino Acids; 2007 Aug; 33(2):359-66. PubMed ID: 17610127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design.
    Aguirre G; Cabrera E; Cerecetto H; Di Maio R; González M; Seoane G; Duffaut A; Denicola A; Gil MJ; Martínez-Merino V
    Eur J Med Chem; 2004 May; 39(5):421-31. PubMed ID: 15110968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of trypanothione reductase as potential antitrypanosomal drugs.
    Chan C; Yin H; Garforth J; McKie JH; Jaouhari RA; Douglas KT; Fairlamb AH; Croft SL
    Biochem Soc Trans; 1995 Nov; 23(4):511S. PubMed ID: 8654696
    [No Abstract]   [Full Text] [Related]  

  • 19. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases.
    Battista T; Colotti G; Ilari A; Fiorillo A
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine-trypanothione pathway: an update.
    Ilari A; Fiorillo A; Genovese I; Colotti G
    Future Med Chem; 2017 Jan; 9(1):61-77. PubMed ID: 27957878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.