BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22781165)

  • 1. Ghrelin effect on nutritional indices, midgut and fat body of Lymantria dispar L. (Lymantriidae).
    Perić Mataruga V; Vlahović M; Janać B; Ilijin L; Janković Tomanić M; Matić D; Mrdaković M
    Peptides; 2012 Sep; 37(1):55-62. PubMed ID: 22781165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ghrelin on the feeding behavior of Lymantria dispar L. (Lymantriidae) caterpillars.
    Perić-Mataruga V; Mircić D; Vlahović M; Mrdaković M; Todorović D; Stevanović D; Milosević V
    Appetite; 2009 Aug; 53(1):147-50. PubMed ID: 19463872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of rearing density on larval growth and activity of digestive enzymes in Lymantria dispar L. (Lepidoptera: Lymantriidae).
    Lazarević J; Perić-Mataruga V; Vlahović M; Mrdaković M; Cvetanović D
    Folia Biol (Krakow); 2004; 52(1-2):105-12. PubMed ID: 15521657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food utilization values of gypsy moth Lymantria dispar (Lepidoptera: Lymantriidae) larvae infected with the microsporidium Vairimorpha sp. (Microsporidia: Burenellidae).
    Henn MW; Solter LF
    J Invertebr Pathol; 2000 Nov; 76(4):263-9. PubMed ID: 11112371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fluoranthene on digestive enzymes activity and relative growth rate of larvae of lepidopteran species, Lymantria dispar L. and Euproctis chrysorrhoea L.
    Filipović A; Mrdaković M; Ilijin L; Grčić A; Matić D; Todorović D; Vlahović M; Perić-Mataruga V
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Nov; 249():109123. PubMed ID: 34237426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells.
    Valaitis AP
    Insect Biochem Mol Biol; 2008 Jun; 38(6):611-8. PubMed ID: 18510972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting proliferation and differentiation of Lepidopteran midgut stem cells.
    Loeb MJ
    Arch Insect Biochem Physiol; 2010 May; 74(1):1-16. PubMed ID: 20422716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sanguinarine in Chelidonium majus induced antifeeding and larval lethality by suppressing food intake and digestive enzymes in Lymantria dispar.
    Zou C; Wang Y; Zou H; Ding N; Geng N; Cao C; Zhang G
    Pestic Biochem Physiol; 2019 Jan; 153():9-16. PubMed ID: 30744901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The steroid hormone 20-hydroxyecdysone upregulated the protein phosphatase 6 for the programmed cell death in the insect midgut.
    Wang CX; Zheng WW; Liu PC; Wang JX; Zhao XF
    Amino Acids; 2012 Aug; 43(2):963-71. PubMed ID: 22143427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar.
    Zou C; Lv C; Wang Y; Cao C; Zhang G
    Pestic Biochem Physiol; 2017 Oct; 142():123-132. PubMed ID: 29107235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cells from midguts of Lepidopteran larvae: clues to the regulation of stem cell fate.
    Loeb MJ; Clark EA; Blackburn M; Hakim RS; Elsen K; Smagghe G
    Arch Insect Biochem Physiol; 2003 Aug; 53(4):186-98. PubMed ID: 12886516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited effect of reactive oxygen species on the composition of susceptible essential amino acids in the midguts of Lymantria dispar caterpillars.
    Barbehenn RV; Niewiadomski J; Kochmanski J; Constabel CP
    Arch Insect Biochem Physiol; 2012 Nov; 81(3):160-77. PubMed ID: 22961657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gypsy moth midgut proteinases: purification and characterization of luminal trypsin, elastase and the brush border membrane leucine aminopeptidase.
    Valaitis AP
    Insect Biochem Mol Biol; 1995 Jan; 25(1):139-49. PubMed ID: 7711746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allocation of cysteine for glutathione production in caterpillars with different antioxidant defense strategies: a comparison of Lymantria dispar and Malacosoma disstria.
    Barbehenn RV; Kochmanski J; Menachem B; Poirier LM
    Arch Insect Biochem Physiol; 2013 Oct; 84(2):90-103. PubMed ID: 24038202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of diverse midgut serine proteinases in the sericigenous Lepidoptera Antheraea assamensis (Helfer) is influenced by choice of host plant species.
    Saikia M; Singh YT; Bhattacharya A; Mazumdar-Leighton S
    Insect Mol Biol; 2011 Feb; 20(1):1-13. PubMed ID: 20854480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of Lymantria dispar L. (Lepidoptera: Lymantriidae) to Bacillus thuringiensis subsp. kurstaki at different ingested doses and temperatures.
    van Frankenhuyzen K; Régnière J; Bernier-Cardou M
    J Invertebr Pathol; 2008 Nov; 99(3):263-74. PubMed ID: 18644375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of dietary α-solanine on the waxmoth Galleria mellonella L.
    Büyükgüzel E; Büyükgüzel K; Erdem M; Adamski Z; Adamski Z; Marciniak P; Ziemnicki K; Ventrella E; Scrano L; Bufo SA
    Arch Insect Biochem Physiol; 2013 May; 83(1):15-24. PubMed ID: 23494897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of long-term exposure of a Lymantria dispar L. population to pollution for the response of larval midgut proteases and acid phosphatases to chronic cadmium treatment.
    Matić D; Vlahović M; Ilijin L; Grčić A; Filipović A; Todorović D; Perić-Mataruga V
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Dec; 250():109172. PubMed ID: 34461292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrally applied ghrelin affects feeding dynamics in male rats.
    Nesić DM; Stevanović DM; Ille T; Petricević S; Masirević-Drasković G; Starcević VP
    J Physiol Pharmacol; 2008 Sep; 59(3):489-500. PubMed ID: 18953092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.