These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 22781277)
1. Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Robinson G; Chalmers RM Exp Parasitol; 2012 Oct; 132(2):200-15. PubMed ID: 22781277 [TBL] [Abstract][Full Text] [Related]
2. Direct comparison of selected methods for genetic categorisation of Cryptosporidium parvum and Cryptosporidium hominis species. Chalmers RM; Ferguson C; Cacciò S; Gasser RB; Abs EL-Osta YG; Heijnen L; Xiao L; Elwin K; Hadfield S; Sinclair M; Stevens M Int J Parasitol; 2005 Apr; 35(4):397-410. PubMed ID: 15777916 [TBL] [Abstract][Full Text] [Related]
3. Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis. Tanriverdi S; Widmer G Infect Genet Evol; 2006 Mar; 6(2):113-22. PubMed ID: 16503512 [TBL] [Abstract][Full Text] [Related]
4. Assessment of three methods for multilocus fragment typing of Cryptosporidium parvum from domestic ruminants in north west Spain. Díaz P; Hadfield SJ; Quílez J; Soilán M; López C; Panadero R; Díez-Baños P; Morrondo P; Chalmers RM Vet Parasitol; 2012 May; 186(3-4):188-95. PubMed ID: 22154970 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the genetic diversity within Cryptosporidium hominis and Cryptosporidium parvum from imported and autochtonous cases of human cryptosporidiosis by mutation scanning. Jex AR; Gasser RB Electrophoresis; 2008 Nov; 29(20):4119-29. PubMed ID: 18991263 [TBL] [Abstract][Full Text] [Related]
6. Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. Wielinga PR; de Vries A; van der Goot TH; Mank T; Mars MH; Kortbeek LM; van der Giessen JW Int J Parasitol; 2008 Jun; 38(7):809-17. PubMed ID: 18054936 [TBL] [Abstract][Full Text] [Related]
7. Multilocus typing and population structure of Cryptosporidium from children in Zaragoza, Spain. Ramo A; Quílez J; Vergara-Castiblanco C; Monteagudo L; Del Cacho E; Clavel A Infect Genet Evol; 2015 Apr; 31():190-7. PubMed ID: 25660036 [TBL] [Abstract][Full Text] [Related]
8. Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Gatei W; Das P; Dutta P; Sen A; Cama V; Lal AA; Xiao L Infect Genet Evol; 2007 Mar; 7(2):197-205. PubMed ID: 17010677 [TBL] [Abstract][Full Text] [Related]
9. A practical and cost-effective mutation scanning-based approach for investigating genetic variation in Cryptosporidium. Jex AR; Whipp M; Campbell BE; Cacciò SM; Stevens M; Hogg G; Gasser RB Electrophoresis; 2007 Nov; 28(21):3875-83. PubMed ID: 17960838 [TBL] [Abstract][Full Text] [Related]
10. Multilocus Sequence Typing helps understand the genetic diversity of Cryptosporidium hominis and Cryptosporidium parvum isolated from Colombian patients. Uran-Velasquez J; Alzate JF; Farfan-Garcia AE; Gomez-Duarte OG; Martinez-Rosado LL; Dominguez-Hernandez DD; Rojas W; Galvan-Diaz AL; Garcia-Montoya GM PLoS One; 2022; 17(7):e0270995. PubMed ID: 35802653 [TBL] [Abstract][Full Text] [Related]
11. Comparison of single- and multilocus genetic diversity in the protozoan parasites Cryptosporidium parvum and C. hominis. Widmer G; Lee Y Appl Environ Microbiol; 2010 Oct; 76(19):6639-44. PubMed ID: 20709840 [TBL] [Abstract][Full Text] [Related]
12. Evidence supporting zoonotic transmission of Cryptosporidium in rural New South Wales. Ng J; Eastwood K; Durrheim D; Massey P; Walker B; Armson A; Ryan U Exp Parasitol; 2008 May; 119(1):192-5. PubMed ID: 18343369 [TBL] [Abstract][Full Text] [Related]
13. Development of a framework for genotyping bovine-derived Cryptosporidium parvum, using a multilocus fragment typing tool. Hotchkiss EJ; Gilray JA; Brennan ML; Christley RM; Morrison LJ; Jonsson NN; Innes EA; Katzer F Parasit Vectors; 2015 Oct; 8():500. PubMed ID: 26427625 [TBL] [Abstract][Full Text] [Related]
14. Glycoprotein 60 diversity in C. hominis and C. parvum causing human cryptosporidiosis in NSW, Australia. Waldron LS; Ferrari BC; Power ML Exp Parasitol; 2009 Jun; 122(2):124-7. PubMed ID: 19233175 [TBL] [Abstract][Full Text] [Related]
15. Multilocus sequence typing of Yadav P; Mirdha BR; Makharia GK; Chaudhry R Indian J Med Res; 2017 Jan; 145(1):102-111. PubMed ID: 28574022 [TBL] [Abstract][Full Text] [Related]
16. Multilocus analysis of Cryptosporidium hominis and Cryptosporidium parvum isolates from sporadic and outbreak-related human cases and C. parvum isolates from sporadic livestock cases in the United Kingdom. Leoni F; Mallon ME; Smith HV; Tait A; McLauchlin J J Clin Microbiol; 2007 Oct; 45(10):3286-94. PubMed ID: 17687021 [TBL] [Abstract][Full Text] [Related]
17. Cryptosporidium and Giardia as foodborne zoonoses. Smith HV; Cacciò SM; Cook N; Nichols RA; Tait A Vet Parasitol; 2007 Oct; 149(1-2):29-40. PubMed ID: 17728067 [TBL] [Abstract][Full Text] [Related]
18. Genotyping of Cryptosporidium parvum with microsatellite markers. Widmer G; Feng X; Tanriverdi S Methods Mol Biol; 2004; 268():177-87. PubMed ID: 15156029 [TBL] [Abstract][Full Text] [Related]
19. Detection and discrimination of Cryptosporidium parvum and C. hominis in water samples by immunomagnetic separation-PCR. Ochiai Y; Takada C; Hosaka M Appl Environ Microbiol; 2005 Feb; 71(2):898-903. PubMed ID: 15691946 [TBL] [Abstract][Full Text] [Related]
20. PCR slippage across the ML-2 microsatellite of the Cryptosporidium MIC1 locus enables development of a PCR assay capable of distinguishing the zoonotic Cryptosporidium parvum from other human infectious Cryptosporidium species. Webber MA; Sari I; Hoefel D; Monis PT; King BJ Zoonoses Public Health; 2014 Aug; 61(5):324-37. PubMed ID: 23954136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]