BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 22781330)

  • 1. Biology of intracranial aneurysms: role of inflammation.
    Chalouhi N; Ali MS; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Koch WJ; Dumont AS
    J Cereb Blood Flow Metab; 2012 Sep; 32(9):1659-76. PubMed ID: 22781330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms.
    Frösen J; Cebral J; Robertson AM; Aoki T
    Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture.
    Jayaraman T; Paget A; Shin YS; Li X; Mayer J; Chaudhry H; Niimi Y; Silane M; Berenstein A
    Vasc Health Risk Manag; 2008; 4(4):805-17. PubMed ID: 19065997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiles in human ruptured and unruptured intracranial aneurysms: what is the role of inflammation?
    Pera J; Korostynski M; Krzyszkowski T; Czopek J; Slowik A; Dziedzic T; Piechota M; Stachura K; Moskala M; Przewlocki R; Szczudlik A
    Stroke; 2010 Feb; 41(2):224-31. PubMed ID: 20044533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonsteroidal Anti-Inflammatory Drugs: A Potential Pharmacological Treatment for Intracranial Aneurysm.
    Fisher CL; Demel SL
    Cerebrovasc Dis Extra; 2019; 9(1):31-45. PubMed ID: 31039577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo.
    Hasan DM; Starke RM; Gu H; Wilson K; Chu Y; Chalouhi N; Heistad DD; Faraci FM; Sigmund CD
    Hypertension; 2015 Jul; 66(1):211-20. PubMed ID: 25916724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats.
    Jamous MA; Nagahiro S; Kitazato KT; Tamura T; Aziz HA; Shono M; Satoh K
    J Neurosurg; 2007 Aug; 107(2):405-11. PubMed ID: 17695397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells.
    Sawyer DM; Pace LA; Pascale CL; Kutchin AC; O'Neill BE; Starke RM; Dumont AS
    J Neuroinflammation; 2016 Jul; 13(1):185. PubMed ID: 27416931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel role for endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms.
    Peña-Silva RA; Chalouhi N; Wegman-Points L; Ali M; Mitchell I; Pierce GL; Chu Y; Ballas ZK; Heistad D; Hasan D
    Hypertension; 2015 Mar; 65(3):587-93. PubMed ID: 25510828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms.
    Skirgaudas M; Awad IA; Kim J; Rothbart D; Criscuolo G
    Neurosurgery; 1996 Sep; 39(3):537-45; discussion 545-7. PubMed ID: 8875484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Therapeutic Strategies for Intracranial Aneurysms Targeting Aneurysm Pathogenesis.
    Liu Z; Ajimu K; Yalikun N; Zheng Y; Xu F
    Front Neurosci; 2019; 13():1238. PubMed ID: 31849575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effects of BP-1-102 against intracranial aneurysms-induced impairments in mice.
    Jiang Z; Huang J; You L; Zhang J
    J Drug Target; 2021 Nov; 29(9):974-982. PubMed ID: 33682559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cigarette smoke and inflammation: role in cerebral aneurysm formation and rupture.
    Chalouhi N; Ali MS; Starke RM; Jabbour PM; Tjoumakaris SI; Gonzalez LF; Rosenwasser RH; Koch WJ; Dumont AS
    Mediators Inflamm; 2012; 2012():271582. PubMed ID: 23316103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of the formation and progression of intracranial aneurysms.
    Kataoka H
    Neurol Med Chir (Tokyo); 2015; 55(3):214-29. PubMed ID: 25761423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nrf-2 signaling inhibits intracranial aneurysm formation and progression by modulating vascular smooth muscle cell phenotype and function.
    Shi Y; Li S; Song Y; Liu P; Yang Z; Liu Y; Quan K; Yu G; Fan Z; Zhu W
    J Neuroinflammation; 2019 Oct; 16(1):185. PubMed ID: 31585542
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Lai XL; Deng ZF; Zhu XG; Chen ZH
    Biosci Rep; 2019 Mar; 39(3):. PubMed ID: 30808715
    [No Abstract]   [Full Text] [Related]  

  • 17. [Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms].
    Zhang J; Jin J; Yang W
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2019 Jul; 48(5):552-559. PubMed ID: 31901031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Understanding of the Molecular Mechanism between Hemodynamic- Induced Intracranial Aneurysm and Inflammation.
    Tang H; Luo Y; Zuo Q; Wang C; Huang Q; Zhao R; Liu J
    Curr Protein Pept Sci; 2019; 20(8):789-798. PubMed ID: 31060483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms.
    Li XG; Wang YB
    CNS Neurosci Ther; 2019 Feb; 25(2):233-244. PubMed ID: 30101479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms.
    Penn DL; Witte SR; Komotar RJ; Sander Connolly E
    J Clin Neurosci; 2014 Jan; 21(1):28-32. PubMed ID: 24120708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.