These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 22781812)

  • 41. Early non-specific modulation of corticospinal excitability during action observation.
    Lepage JF; Tremblay S; Théoret H
    Eur J Neurosci; 2010 Mar; 31(5):931-7. PubMed ID: 20374291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Behavioural exposure and sleep do not modify corticospinal and intracortical excitability in the human motor system.
    Doeltgen SH; Ridding MC
    Clin Neurophysiol; 2010 Mar; 121(3):448-52. PubMed ID: 20064743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of motor cortex rTMS on corticospinal descending activity.
    Di Lazzaro V; Profice P; Pilato F; Dileone M; Oliviero A; Ziemann U
    Clin Neurophysiol; 2010 Apr; 121(4):464-73. PubMed ID: 20096628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcranial magnetic stimulation of the primary motor cortex modulates response interference in a flanker task.
    Soto D; Montoro PR; Humphreys GW
    Neurosci Lett; 2009 Feb; 451(3):261-5. PubMed ID: 19146925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disruption of M1 Activity during Performance Plateau Impairs Consolidation of Motor Memories.
    Hamel R; Trempe M; Bernier PM
    J Neurosci; 2017 Sep; 37(38):9197-9206. PubMed ID: 28821677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing.
    Brown LE; Wilson ET; Gribble PL
    J Cogn Neurosci; 2009 May; 21(5):1013-22. PubMed ID: 18702578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transient motor evoked potential suppression following a complex sensorimotor task.
    McDonnell MN; Ridding MC
    Clin Neurophysiol; 2006 Jun; 117(6):1266-72. PubMed ID: 16600678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study.
    Schabrun SM; Ridding MC; Miles TS
    Eur J Neurosci; 2008 Feb; 27(3):750-6. PubMed ID: 18279327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theta burst TMS increases cerebral blood flow in the primary motor cortex during motor performance as assessed by arterial spin labeling (ASL).
    Orosz A; Jann K; Wirth M; Wiest R; Dierks T; Federspiel A
    Neuroimage; 2012 Jul; 61(3):599-605. PubMed ID: 22613775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece.
    D'Ausilio A; Altenmüller E; Olivetti Belardinelli M; Lotze M
    Eur J Neurosci; 2006 Aug; 24(3):955-8. PubMed ID: 16930423
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lateralization of motor excitability during observation of bimanual signs.
    Möttönen R; Farmer H; Watkins KE
    Neuropsychologia; 2010 Aug; 48(10):3173-7. PubMed ID: 20600176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of the primary motor cortex during skill acquisition on a two-degrees-of-freedom movement task.
    Shemmell J; Riek S; Tresilian JR; Carson RG
    J Mot Behav; 2007 Jan; 39(1):29-39. PubMed ID: 17251169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased corticospinal excitability during direct observation of self-movement and indirect observation with a mirror box.
    Funase K; Tabira T; Higashi T; Liang N; Kasai T
    Neurosci Lett; 2007 May; 419(2):108-12. PubMed ID: 17481817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.
    Stöckel T; Carroll TJ; Summers JJ; Hinder MR
    J Neurophysiol; 2016 Aug; 116(2):575-86. PubMed ID: 27169508
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation.
    Schintu S; Martín-Arévalo E; Vesia M; Rossetti Y; Salemme R; Pisella L; Farnè A; Reilly KT
    Neural Plast; 2016; 2016():5716179. PubMed ID: 27418979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning.
    Garry MI; Kamen G; Nordstrom MA
    J Neurophysiol; 2004 Apr; 91(4):1570-8. PubMed ID: 14627660
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time course of bilateral corticospinal tract excitability in the motor-learning process.
    Miyaguchi S; Yamaguchi M; Kojima S; Yokota H; Saito K; Inukai Y; Otsuru N; Onishi H
    Neurosci Lett; 2019 Oct; 711():134410. PubMed ID: 31425823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human θ burst stimulation enhances subsequent motor learning and increases performance variability.
    Teo JT; Swayne OB; Cheeran B; Greenwood RJ; Rothwell JC
    Cereb Cortex; 2011 Jul; 21(7):1627-38. PubMed ID: 21127013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.
    Mongeon D; Blanchet P; Messier J
    Brain Cogn; 2013 Mar; 81(2):271-82. PubMed ID: 23313834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motor cortex inhibition by TMS reduces cognitive non-motor procedural learning when immediate incentives are present.
    Wilkinson L; Koshy PJ; Steel A; Bageac D; Schintu S; Wassermann EM
    Cortex; 2017 Dec; 97():70-80. PubMed ID: 29096197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.