BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22781815)

  • 1. IP(3) receptors, stress and apoptosis.
    Lencesova L; Krizanova O
    Gen Physiol Biophys; 2012 Jun; 31(2):119-30. PubMed ID: 22781815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulphide signalling potentiates apoptosis through the up-regulation of IP3 receptor types 1 and 2.
    Lencesova L; Hudecova S; Csaderova L; Markova J; Soltysova A; Pastorek M; Sedlak J; Wood ME; Whiteman M; Ondrias K; Krizanova O
    Acta Physiol (Oxf); 2013 Aug; 208(4):350-61. PubMed ID: 23582047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond.
    Joseph SK; Hajnóczky G
    Apoptosis; 2007 May; 12(5):951-68. PubMed ID: 17294082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational analysis of localized Ca2+-dynamics generated by heterogeneous release sites.
    Cooper Z; Greenwood M; Mazzag B
    Bull Math Biol; 2009 Oct; 71(7):1543-79. PubMed ID: 19440797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waiting time distributions for clusters of IP3 receptors.
    Higgins ER; Schmidle H; Falcke M
    J Theor Biol; 2009 Jul; 259(2):338-49. PubMed ID: 19348812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of three models of the inositol trisphosphate receptor.
    Sneyd J; Falcke M; Dufour JF; Fox C
    Prog Biophys Mol Biol; 2004; 85(2-3):121-40. PubMed ID: 15142740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors.
    Williams GS; Molinelli EJ; Smith GD
    J Theor Biol; 2008 Jul; 253(1):170-88. PubMed ID: 18405920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of two distinct stressors on gene expression of the type 1 IP3 receptors.
    Krizanova O; Kvetnansky R; Jurkovicova D
    Gen Physiol Biophys; 2005 Jun; 24(2):237-46. PubMed ID: 16118475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-induced modification of the inositol triphosphate receptor in neuronal nuclei of newborn piglets: role of nitric oxide.
    Mishra OP; Qayyum I; Delivoria-Papadopoulos M
    J Neurosci Res; 2003 Oct; 74(2):333-8. PubMed ID: 14515363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent inactivation and the dynamics of calcium puffs and sparks.
    Groff JR; Smith GD
    J Theor Biol; 2008 Aug; 253(3):483-99. PubMed ID: 18486154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mini-dystrophin expression down-regulates IP3-mediated calcium release events in resting dystrophin-deficient muscle cells.
    Balghi H; Sebille S; Mondin L; Cantereau A; Constantin B; Raymond G; Cognard C
    J Gen Physiol; 2006 Aug; 128(2):219-30. PubMed ID: 16847098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranyl acetate modulates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney.
    Ondrias K; Sirova M; Kubovcakova L; Krizanova O
    Gen Physiol Biophys; 2008 Sep; 27(3):187-93. PubMed ID: 18981534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signaling pathway in dystrophin-deficient muscle cells.
    Balghi H; Sebille S; Constantin B; Patri S; Thoreau V; Mondin L; Mok E; Kitzis A; Raymond G; Cognard C
    J Gen Physiol; 2006 Feb; 127(2):171-82. PubMed ID: 16446505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-dependent action potentials induced by brevetoxin-3 trigger both IP3 increase and intracellular Ca2+ release in rat skeletal myotubes.
    Liberona JL; Cárdenas JC; Reyes R; Hidalgo J; Molgó J; Jaimovich E
    Cell Calcium; 2008 Sep; 44(3):289-97. PubMed ID: 18276006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of inositol 1,4,5-trisphosphate receptor-mediated intracellular stochastic calcium oscillations on activation of glycogen phosphorylase.
    Wu D; Jia Y; Rozi A
    Biophys Chem; 2004 Jul; 110(1-2):179-90. PubMed ID: 15223153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacology of inositol trisphosphate receptors.
    Bultynck G; Sienaert I; Parys JB; Callewaert G; De Smedt H; Boens N; Dehaen W; Missiaen L
    Pflugers Arch; 2003 Mar; 445(6):629-42. PubMed ID: 12632182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signalling mechanisms for TRPC3 channels.
    Putney JW; Trebak M; Vazquez G; Wedel B; Bird GS
    Novartis Found Symp; 2004; 258():123-33; discussion 133-9, 155-9, 263-6. PubMed ID: 15104179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular properties of inositol 1,4,5-trisphosphate receptors.
    Patel S; Joseph SK; Thomas AP
    Cell Calcium; 1999 Mar; 25(3):247-64. PubMed ID: 10378086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor/Ca2+ channels.
    Huh YH; Kim KD; Yoo SH
    Biochemistry; 2007 Dec; 46(49):14032-43. PubMed ID: 17997581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of the modulation by buffers of Ca2+ release through clusters of IP3 receptors.
    Zeller S; Rüdiger S; Engel H; Sneyd J; Warnecke G; Parker I; Falcke M
    Biophys J; 2009 Aug; 97(4):992-1002. PubMed ID: 19686646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.