These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22781848)

  • 1. Preparation of an awake mouse for recording neural responses and injecting tracers.
    Muniak MA; Mayko ZM; Ryugo DK; Portfors CV
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22781848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A technique for stereotaxic recordings of neuronal activity in awake, head-restrained mice.
    Bryant JL; Roy S; Heck DH
    J Neurosci Methods; 2009 Mar; 178(1):75-9. PubMed ID: 19073214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel stereotaxic apparatus for neuronal recordings in awake head-restrained rats.
    Chaniary KD; Baron MS; Robinson P; Rice AC; Wetzel PA; Shapiro SM
    J Neurosci Methods; 2011 May; 198(1):29-35. PubMed ID: 21392531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals.
    Barker DJ; Root DH; Coffey KR; Ma S; West MO
    J Vis Exp; 2014 Feb; (84):e51004. PubMed ID: 24561332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-invasive head-holding device for chronic neural recordings in awake behaving monkeys.
    Amemori S; Amemori K; Cantor ML; Graybiel AM
    J Neurosci Methods; 2015 Jan; 240():154-60. PubMed ID: 25448381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface electrodes record and label brain neurons in insects.
    Kostarakos K; Hedwig B
    J Neurophysiol; 2017 Nov; 118(5):2884-2889. PubMed ID: 28904103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opto-electrical bimodal recording of neural activity in awake head-restrained mice.
    Cobar LF; Kashef A; Bose K; Tashiro A
    Sci Rep; 2022 Jan; 12(1):736. PubMed ID: 35031630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Juxtacellular Monitoring and Localization of Single Neurons within Sub-cortical Brain Structures of Alert, Head-restrained Rats.
    Moore JD; Deschênes M; Kleinfeld D
    J Vis Exp; 2015 Apr; (98):. PubMed ID: 25938559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
    Pomberger T; Hage SR
    J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single neuron recordings in dorsal cochlear nucleus (DCN) of awake gerbil.
    Navawongse R; Voigt HF
    Hear Res; 2009 Sep; 255(1-2):44-57. PubMed ID: 19450672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A technique to restrain awake rats for recording single-unit activity with glass micropipettes and conventional microdrives.
    Cassella JV; Davis M
    J Neurosci Methods; 1987 Feb; 19(2):105-13. PubMed ID: 3821162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recording chronically from the same neurons in awake, behaving primates.
    Tolias AS; Ecker AS; Siapas AG; Hoenselaar A; Keliris GA; Logothetis NK
    J Neurophysiol; 2007 Dec; 98(6):3780-90. PubMed ID: 17942615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute head-fixed recordings in awake mice with multiple Neuropixels probes.
    Durand S; Heller GR; Ramirez TK; Luviano JA; Williford A; Sullivan DT; Cahoon AJ; Farrell C; Groblewski PA; Bennett C; Siegle JH; Olsen SR
    Nat Protoc; 2023 Feb; 18(2):424-457. PubMed ID: 36477710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing and using piggy-back multibarrel electrodes for in vivo pharmacological manipulations of neural responses.
    Dondzillo A; Thornton JL; Tollin DJ; Klug A
    J Vis Exp; 2013 Jan; (71):e4358. PubMed ID: 23354055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic multiunit recordings in behaving animals: advantages and limitations.
    Supèr H; Roelfsema PR
    Prog Brain Res; 2005; 147():263-82. PubMed ID: 15581712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reversible system for chronic recordings in macaque monkeys.
    Pigarev IN; Nothdurft HC; Kastner S
    J Neurosci Methods; 1997 Dec; 77(2):157-62. PubMed ID: 9489892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.