These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 22782133)

  • 1. Exploring new 129Xe chemical shift ranges in HXeY compounds: hydrogen more relativistic than xenon.
    Lantto P; Standara S; Riedel S; Vaara J; Straka M
    Phys Chem Chem Phys; 2012 Aug; 14(31):10944-52. PubMed ID: 22782133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-Shift Bonding in Xenon Hydrides: An NBO/NRT Investigation on HXeY···HX (Y = Cl, Br, I; X = OH, Cl, Br, I, CCH, CN) via H-Xe Blue-Shift Phenomena.
    Zhang G; Su Y; Zou X; Fu L; Song J; Chen D; Sun C
    Front Chem; 2020; 8():277. PubMed ID: 32391318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grand canonical Monte Carlo simulations of the 129Xe NMR line shapes of xenon adsorbed in (+/-)-[Co(en)3]Cl3.
    Sears DN; Wasylishen RE; Ueda T
    J Phys Chem B; 2006 Jun; 110(23):11120-7. PubMed ID: 16771374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.
    Standara S; Kulhánek P; Marek R; Straka M
    J Comput Chem; 2013 Aug; 34(22):1890-8. PubMed ID: 23703381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rovibrational effects on NMR shieldings in a heavy-element system: XeF2.
    Lantto P; Kangasvieri S; Vaara J
    J Chem Phys; 2012 Dec; 137(21):214309. PubMed ID: 23231233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chemical shifts of Xe in the cages of clathrate hydrate Structures I and II.
    Stueber D; Jameson CJ
    J Chem Phys; 2004 Jan; 120(3):1560-71. PubMed ID: 15268283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical predictions of the spectroscopic parameters in noble-gas molecules: HXeOH and its complex with water.
    Cukras J; Sadlej J
    Phys Chem Chem Phys; 2011 Sep; 13(34):15455-67. PubMed ID: 21804992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.
    Hanni M; Lantto P; Vaara J
    Phys Chem Chem Phys; 2009 Apr; 11(14):2485-96. PubMed ID: 19325983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT study of the NMR properties of xenon in covalent compounds and van der waals complexes-implications for the use of 129Xe as a molecular probe.
    Bagno A; Saielli G
    Chemistry; 2003 Apr; 9(7):1486-95. PubMed ID: 12658645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles.
    Radula-Janik K; Kupka T; Ejsmont K; Daszkiewicz Z; Sauer SP
    Magn Reson Chem; 2013 Oct; 51(10):630-5. PubMed ID: 23922027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution electron spin resonance spectroscopy of XeF* in solid argon. The hyperfine structure constants as a probe of relativistic effects in the chemical bonding properties of a heavy noble gas atom.
    Misochko EY; Akimov AV; Goldschleger IU; Tyurin DA; Laikov DN
    J Chem Phys; 2005 Jan; 122(3):34503. PubMed ID: 15740205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HY...N2 and HXeY...N2 complexes in solid xenon (Y=Cl and Br): unexpected suppression of the complex formation for deposition at higher temperature.
    Khriachtchev L; Tapio S; Räsänen M; Domanskaya A; Lignell A
    J Chem Phys; 2010 Aug; 133(8):084309. PubMed ID: 20815571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the effects of nonspecific xenon-protein interactions on (129)Xe chemical shifts in aqueous solution: further development of xenon as a biomolecular probe.
    Rubin SM; Spence MM; Pines A; Wemmer DE
    J Magn Reson; 2001 Sep; 152(1):79-86. PubMed ID: 11531366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Xe shielding surfaces for Xe interacting with linear molecules and spherical tops.
    Sears DN; Jameson CJ
    J Chem Phys; 2004 Aug; 121(5):2151-7. PubMed ID: 15260769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic and electron-correlation effects on the nuclear magnetic resonance shieldings of molecules containing tin and lead atoms.
    Maldonado AF; Aucar GA
    J Phys Chem A; 2014 Sep; 118(36):7863-75. PubMed ID: 25110942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.