These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22782293)

  • 41. Towards nano-organic chemistry: perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures.
    Mercuri F; Baldoni M; Sgamellotti A
    Nanoscale; 2012 Jan; 4(2):369-79. PubMed ID: 22167069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioresponsive peptide-inorganic hybrid nanomaterials.
    Aili D; Stevens MM
    Chem Soc Rev; 2010 Sep; 39(9):3358-70. PubMed ID: 20596582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering responsive mechanisms to control the assembly of peptide-based nanostructures.
    Dublin S; Zimenkov Y; Conticello VP
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):653-9. PubMed ID: 19614570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organic materials: wood, trees and nanotechnology.
    Beecher JF
    Nat Nanotechnol; 2007 Aug; 2(8):466-7. PubMed ID: 18654341
    [No Abstract]   [Full Text] [Related]  

  • 45. Photocurrent generation in nanostructured organic solar cells.
    Yang F; Forrest SR
    ACS Nano; 2008 May; 2(5):1022-32. PubMed ID: 19206500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-dimensional, hinged bar-code metal oxide layers and free-standing, ordered organic nanostructures from turbostratic vanadium oxide.
    O'Dwyer C; Lavayen V; Fuenzalida D; Lozano H; Santa Ana MA; Benavente E; González G; Sotomayor Torres CM
    Small; 2008 Jul; 4(7):990-1000. PubMed ID: 18535992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-assembly of graphenelike ZnO superstructured nanosheets and their application in hybrid photoconductors.
    Yan H; Yu Z; Lu K; Zhang Y; Wei Z
    Small; 2011 Dec; 7(24):3472-8. PubMed ID: 22069306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids.
    Arakaki A; Shimizu K; Oda M; Sakamoto T; Nishimura T; Kato T
    Org Biomol Chem; 2015 Jan; 13(4):974-89. PubMed ID: 25375353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience.
    Cavalli S; Albericio F; Kros A
    Chem Soc Rev; 2010 Jan; 39(1):241-63. PubMed ID: 20023851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aggregate nanostructures of organic molecular materials.
    Liu H; Xu J; Li Y; Li Y
    Acc Chem Res; 2010 Dec; 43(12):1496-508. PubMed ID: 20942417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling the self-assembly of metal-seamed organic nanocapsules.
    Kumari H; Mossine AV; Kline SR; Dennis CL; Fowler DA; Teat SJ; Barnes CL; Deakyne CA; Atwood JL
    Angew Chem Int Ed Engl; 2012 Feb; 51(6):1452-4. PubMed ID: 22294358
    [No Abstract]   [Full Text] [Related]  

  • 52. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine.
    Shcharbin D; Halets-Bui I; Abashkin V; Dzmitruk V; Loznikova S; Odabaşı M; Acet Ö; Önal B; Özdemir N; Shcharbina N; Bryszewska M
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110354. PubMed ID: 31325775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organic electronics: self-assembly is ready to roll.
    Smith WF
    Nat Nanotechnol; 2007 Feb; 2(2):77-8. PubMed ID: 18654219
    [No Abstract]   [Full Text] [Related]  

  • 54. Nanoscopic optical sensors based on functional supramolecular hybrid materials.
    Martínez-Máñez R; Sancenón F; Hecht M; Biyikal M; Rurack K
    Anal Bioanal Chem; 2011 Jan; 399(1):55-74. PubMed ID: 20872137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The supramolecular chemistry of organic-inorganic hybrid materials.
    Descalzo AB; Martínez-Máñez R; Sancenón F; Hoffmann K; Rurack K
    Angew Chem Int Ed Engl; 2006 Sep; 45(36):5924-48. PubMed ID: 16955396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-Dimensional Peptide and Protein Assemblies.
    Magnotti E; Conticello V
    Adv Exp Med Biol; 2016; 940():29-60. PubMed ID: 27677508
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bio-inspired strategy for on-surface synthesis of silver nanoparticles for metal/organic hybrid nanomaterials and LDI-MS substrates.
    Hong S; Lee JS; Ryu J; Lee SH; Lee DY; Kim DP; Park CB; Lee H
    Nanotechnology; 2011 Dec; 22(49):494020. PubMed ID: 22101139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes.
    Nakanishi T
    Chem Commun (Camb); 2010 May; 46(20):3425-36. PubMed ID: 20458394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.
    Ciesielski A; Palma CA; Bonini M; Samorì P
    Adv Mater; 2010 Aug; 22(32):3506-20. PubMed ID: 20626011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.