These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22782521)

  • 1. Excitation energies of retinal chromophores: critical role of the structural model.
    Valsson O; Angeli C; Filippi C
    Phys Chem Chem Phys; 2012 Aug; 14(31):11015-20. PubMed ID: 22782521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal?
    Wolański Ł; Grabarek D; Andruniów T
    J Comput Chem; 2018 Jul; 39(20):1470-1480. PubMed ID: 29635695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods.
    Walczak E; Szefczyk B; Andruniów T
    J Chem Theory Comput; 2013 Nov; 9(11):4915-27. PubMed ID: 26583410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase.
    Toker Y; Rahbek DB; Kiefer HV; Rajput J; Antoine R; Dugourd P; Brøndsted Nielsen S; Bochenkova AV; Andersen LH
    Phys Chem Chem Phys; 2013 Dec; 15(45):19566-9. PubMed ID: 24142109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground and excited states of retinal schiff base chromophores by multiconfigurational perturbation theory.
    Sekharan S; Weingart O; Buss V
    Biophys J; 2006 Jul; 91(1):L07-9. PubMed ID: 16648170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited-state properties and environmental effects for protonated schiff bases: a theoretical study.
    Aquino AJ; Barbatti M; Lischka H
    Chemphyschem; 2006 Oct; 7(10):2089-96. PubMed ID: 16941558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies.
    Schapiro I; Sivalingam K; Neese F
    J Chem Theory Comput; 2013 Aug; 9(8):3567-80. PubMed ID: 26584112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model.
    Zen A; Coccia E; Gozem S; Olivucci M; Guidoni L
    J Chem Theory Comput; 2015 Mar; 11(3):992-1005. PubMed ID: 25821414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.
    Bravaya K; Bochenkova A; Granovsky A; Nemukhin A
    J Am Chem Soc; 2007 Oct; 129(43):13035-42. PubMed ID: 17924622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations.
    Grabarek D; Andruniów T
    J Comput Chem; 2018 Aug; 39(22):1720-1727. PubMed ID: 29727036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results.
    Grabarek D; Walczak E; Andruniów T
    J Chem Theory Comput; 2016 May; 12(5):2346-56. PubMed ID: 27049438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonadiabatic ab initio dynamics of two models of Schiff base retinal.
    Ishida T; Nanbu S; Nakamura H
    J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases.
    Kraack JP; Buckup T; Motzkus M
    Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the sub-microsecond photodissociation dynamics in gas-phase retinal chromophores.
    Lammich L; Nielsen IB; Sand H; Svendsen A; Andersen LH
    J Phys Chem A; 2007 May; 111(21):4567-72. PubMed ID: 17477513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CASSCF and CASPT2 studies on the structures, transition energies, and dipole moments of ground and excited states for azulene.
    Murakami A; Kobayashi T; Goldberg A; Nakamura S
    J Chem Phys; 2004 Jan; 120(3):1245-52. PubMed ID: 15268250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal models: comparison of electronic absorption spectra in the gas phase and in methanol solution.
    Muñoz-Losa A; Fdez Galván I; Aguilar MA; Martín ME
    J Phys Chem B; 2008 Jul; 112(29):8815-23. PubMed ID: 18590305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S1 and S2 excited States of gas-phase Schiff-base retinal chromophores.
    Nielsen IB; Lammich L; Andersen LH
    Phys Rev Lett; 2006 Jan; 96(1):018304. PubMed ID: 16486529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2.
    Szefczyk B; Grabarek D; Walczak E; Andruniów T
    J Comput Chem; 2017 Jul; 38(20):1799-1810. PubMed ID: 28512740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating absorption shifts for retinal proteins: computational challenges.
    Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M
    J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.