These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22783228)

  • 1. The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep.
    Roden EE; McBeth JM; Blöthe M; Percak-Dennett EM; Fleming EJ; Holyoke RR; Luther GW; Emerson D; Schieber J
    Front Microbiol; 2012; 3():172. PubMed ID: 22783228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial iron redox cycling in a circumneutral-pH groundwater seep.
    Blöthe M; Roden EE
    Appl Environ Microbiol; 2009 Jan; 75(2):468-73. PubMed ID: 19047399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable Isotope Probing for Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park.
    Fortney NW; He S; Kulkarni A; Friedrich MW; Holz C; Boyd ES; Roden EE
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment.
    Dangeti S; McBeth JM; Roshani B; Vyskocil JM; Rindall B; Chang W
    Sci Total Environ; 2020 Mar; 710():136386. PubMed ID: 31927292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil.
    Tong H; Chen M; Lv Y; Liu C; Zheng C; Xia Y
    Environ Geochem Health; 2021 Mar; 43(3):1305-1317. PubMed ID: 32975698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep.
    Krepski ST; Hanson TE; Chan CS
    Environ Microbiol; 2012 Jul; 14(7):1671-80. PubMed ID: 22151253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe interactions drive the formation of floating iron films in circumneutral wetlands.
    Dong L; Chen M; Liu C; Lv Y; Wang X; Lei Q; Fang Y; Tong H
    Sci Total Environ; 2024 Jan; 906():167711. PubMed ID: 37832684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographical Distribution of Iron Redox Cycling Bacterial Community in Peatlands: Distinct Assemble Mechanism Across Environmental Gradient.
    Yang L; Jiang M; Zou Y; Qin L; Chen Y
    Front Microbiol; 2021; 12():674411. PubMed ID: 34113332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep.
    Lloyd KG; Albert DB; Biddle JF; Chanton JP; Pizarro O; Teske A
    PLoS One; 2010 Jan; 5(1):e8738. PubMed ID: 20090951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution and biogeochemistry of redox active species in arctic sedimentary porewaters and seeps.
    Hudson JM; Michaud AB; Emerson D; Chin YP
    Environ Sci Process Impacts; 2022 Mar; 24(3):426-438. PubMed ID: 35170586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China.
    Tian C; Wang C; Tian Y; Wu X; Xiao B
    Can J Microbiol; 2015 Aug; 61(8):575-83. PubMed ID: 26156094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium.
    Kato S; Chan C; Itoh T; Ohkuma M
    Appl Environ Microbiol; 2013 Sep; 79(17):5283-90. PubMed ID: 23811518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated anaerobic microbial redox cycling of iron.
    Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE
    Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.
    Fortney NW; He S; Converse BJ; Beard BL; Johnson CM; Boyd ES; Roden EE
    Geobiology; 2016 May; 14(3):255-75. PubMed ID: 26750514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients.
    Otte JM; Harter J; Laufer K; Blackwell N; Straub D; Kappler A; Kleindienst S
    Environ Microbiol; 2018 Jul; 20(7):2483-2499. PubMed ID: 29708639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Composition and Metabolic Potential of Microbial Communities in Chocolate Pots Hot Springs.
    Fortney NW; He S; Converse BJ; Boyd ES; Roden EE
    Front Microbiol; 2018; 9():2075. PubMed ID: 30245673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial mineral colonization across a subsurface redox transition zone.
    Converse BJ; McKinley JP; Resch CT; Roden EE
    Front Microbiol; 2015; 6():858. PubMed ID: 26379637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.