These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 22783245)
1. The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Crosby CH; Bailey JV Front Microbiol; 2012; 3():241. PubMed ID: 22783245 [TBL] [Abstract][Full Text] [Related]
2. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Bailey JV; Corsetti FA; Greene SE; Crosby CH; Liu P; Orphan VJ Geobiology; 2013 Sep; 11(5):397-405. PubMed ID: 23786451 [TBL] [Abstract][Full Text] [Related]
3. Fossilized giant sulfide-oxidizing bacteria from the Devonian Hollard Mound seep deposit, Morocco. Smrzka D; Zwicker J; Schulz-Vogt H; Little CTS; Rieder M; Meister P; Gier S; Peckmann J Geobiology; 2024; 22(1):e12581. PubMed ID: 38059419 [TBL] [Abstract][Full Text] [Related]
4. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco). Cosmidis J; Benzerara K; Gheerbrant E; Estève I; Bouya B; Amaghzaz M Geobiology; 2013 Mar; 11(2):139-53. PubMed ID: 23301909 [TBL] [Abstract][Full Text] [Related]
5. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth. Mänd K; Kirsimäe K; Lepland A; Crosby CH; Bailey JV; Konhauser KO; Wirth R; Schreiber A; Lumiste K Geobiology; 2018 Nov; 16(6):640-658. PubMed ID: 30062734 [TBL] [Abstract][Full Text] [Related]
6. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Bailey JV; Joye SB; Kalanetra KM; Flood BE; Corsetti FA Nature; 2007 Jan; 445(7124):198-201. PubMed ID: 17183268 [TBL] [Abstract][Full Text] [Related]
7. Microbial communities associated with phosphogenic sediments and phosphoclast-associated DNA of the Benguela upwelling system. Zoss R; Medina Ferrer F; Flood BE; Jones DS; Louw DC; Bailey J Geobiology; 2019 Jan; 17(1):76-90. PubMed ID: 30369004 [TBL] [Abstract][Full Text] [Related]
8. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943 [TBL] [Abstract][Full Text] [Related]
9. Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. Brock J; Schulz-Vogt HN ISME J; 2011 Mar; 5(3):497-506. PubMed ID: 20827290 [TBL] [Abstract][Full Text] [Related]
10. A review of phosphate mineral nucleation in biology and geobiology. Omelon S; Ariganello M; Bonucci E; Grynpas M; Nanci A Calcif Tissue Int; 2013 Oct; 93(4):382-96. PubMed ID: 24077874 [TBL] [Abstract][Full Text] [Related]
11. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Stevens EW; Bailey JV; Flood BE; Jones DS; Gilhooly WP; Joye SB; Teske A; Mason OU Geobiology; 2015 Nov; 13(6):588-603. PubMed ID: 26462132 [TBL] [Abstract][Full Text] [Related]
12. Potential Fossilized Sulfide-Oxidizing Bacteria in the Upper Miocene Sulfur-Bearing Limestones From the Lorca Basin (SE Spain): Paleoenvironmental Implications. Andreetto F; Dela Pierre F; Gibert L; Natalicchio M; Ferrando S Front Microbiol; 2019; 10():1031. PubMed ID: 31164872 [TBL] [Abstract][Full Text] [Related]
13. Uppermost Triassic phosphorites from Williston Lake, Canada: link to fluctuating euxinic-anoxic conditions in northeastern Panthalassa before the end-Triassic mass extinction. Larina E; Bottjer DJ; Corsetti FA; Zonneveld JP; Celestian AJ; Bailey JV Sci Rep; 2019 Dec; 9(1):18790. PubMed ID: 31827166 [TBL] [Abstract][Full Text] [Related]
14. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Xiao S; Knoll AH Lethaia; 1999 Sep; 32(3):219-40. PubMed ID: 11543524 [TBL] [Abstract][Full Text] [Related]
16. Eumetazoan fossils in terminal proterozoic phosphorites? Xiao S; Yuan X; Knoll AH Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13684-9. PubMed ID: 11095754 [TBL] [Abstract][Full Text] [Related]
17. Origins of the Ediacaran Doushantuo High-Grade Primary Phosphorites at Kaiyang, Guizhou Province, China. Wu W; Yang R; Liu J; Wang Z; Li S; Shao Y; Deng Y; Ye T; Luo C; Gao L; Chen J; Ren H; Yang C; Li J; Wan D; Tai W ACS Omega; 2023 Dec; 8(50):47938-47953. PubMed ID: 38144124 [TBL] [Abstract][Full Text] [Related]
18. Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Brock J; Rhiel E; Beutler M; Salman V; Schulz-Vogt HN Antonie Van Leeuwenhoek; 2012 Feb; 101(2):347-57. PubMed ID: 21909788 [TBL] [Abstract][Full Text] [Related]
19. Chemotrophic microbial mats and their potential for preservation in the rock record. Bailey JV; Orphan VJ; Joye SB; Corsetti FA Astrobiology; 2009 Nov; 9(9):843-59. PubMed ID: 19968462 [TBL] [Abstract][Full Text] [Related]
20. Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Cunningham JA; Thomas CW; Bengtson S; Marone F; Stampanoni M; Turner FR; Bailey JV; Raff RA; Raff EC; Donoghue PC Proc Biol Sci; 2012 May; 279(1734):1857-64. PubMed ID: 22158954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]