BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 22783265)

  • 1. The beginnings of crop phosphoproteomics: exploring early warning systems of stress.
    Rampitsch C; Bykova NV
    Front Plant Sci; 2012; 3():144. PubMed ID: 22783265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress.
    Chong L; Hsu CC; Zhu Y
    J Exp Bot; 2022 Nov; 73(19):6547-6557. PubMed ID: 35959917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing the role of mitogen-activated protein kinases against abiotic stresses in plants.
    Majeed Y; Zhu X; Zhang N; Ul-Ain N; Raza A; Haider FU; Si H
    Front Plant Sci; 2023; 14():932923. PubMed ID: 36909407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis).
    Kayum MA; Park JI; Nath UK; Saha G; Biswas MK; Kim HT; Nou IS
    BMC Genomics; 2017 Nov; 18(1):885. PubMed ID: 29145809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.
    Kayum MA; Jung HJ; Park JI; Ahmed NU; Saha G; Yang TJ; Nou IS
    Mol Genet Genomics; 2015 Feb; 290(1):79-95. PubMed ID: 25149146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.
    Kosová K; Vítámvás P; Urban MO; Klíma M; Roy A; Prášil IT
    Int J Mol Sci; 2015 Sep; 16(9):20913-42. PubMed ID: 26340626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses.
    Mangal V; Lal MK; Tiwari RK; Altaf MA; Sood S; Gahlaut V; Bhatt A; Thakur AK; Kumar R; Bhardwaj V; Kumar V; Singh B; Singh R; Kumar D
    Planta; 2023 Mar; 257(4):80. PubMed ID: 36913037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress.
    Bai Y; Kissoudis C; Yan Z; Visser RGF; van der Linden G
    Plant J; 2018 Feb; 93(4):781-793. PubMed ID: 29237240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress.
    Narsai R; Wang C; Chen J; Wu J; Shou H; Whelan J
    BMC Genomics; 2013 Feb; 14():93. PubMed ID: 23398910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.
    Foyer CH; Rasool B; Davey JW; Hancock RD
    J Exp Bot; 2016 Mar; 67(7):2025-37. PubMed ID: 26936830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits.
    Pandey P; Irulappan V; Bagavathiannan MV; Senthil-Kumar M
    Front Plant Sci; 2017; 8():537. PubMed ID: 28458674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.
    Gupta SM; Arora S; Mirza N; Pande A; Lata C; Puranik S; Kumar J; Kumar A
    Front Plant Sci; 2017; 8():643. PubMed ID: 28487720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring and exploiting cuticle biosynthesis for abiotic and biotic stress tolerance in wheat and barley.
    Wang X; Chang C
    Front Plant Sci; 2022; 13():1064390. PubMed ID: 36438119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell wall proteomics of crops.
    Komatsu S; Yanagawa Y
    Front Plant Sci; 2013; 4():17. PubMed ID: 23403621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops.
    Sánchez-Bermúdez M; Del Pozo JC; Pernas M
    Front Plant Sci; 2022; 13():918537. PubMed ID: 35845642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.